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Interactive theorem provers, or proof assistants, are important tools across many areas of computer science
and mathematics, but even experts find them challenging to use effectively. To improve their design, we need
a deeper, user-centric understanding of proof assistant usage.

We present the results of an observation study of proof assistant users. We use contextual inquiry method-
ology, observing 30 participants doing their everyday work in Rocq and Lean. We qualitatively analyze their
experiences to surface four observations: that proof writers iterate on their proofs by reacting to and incorpo-
rating feedback from the proof assistant; that proof progress often involves challenging conversations with
the proof assistant; that proofs are constructed in consultation with a wide array of external resources; and
that proof writers are guided by design considerations that go beyond “getting to QED.” Our documentation
of these themes clarifies what proof assistant usage looks like currently and identifies potential opportunities
that researchers should consider when working to improve the usability of proof assistants.
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1 Introduction

Mechanized proofs are increasingly important in many branches of computer science and mathe-
matics. For example, a 2020 report showed that POPL saw about a quarter of published papers in
recent years accompanied by mechanized proofs [37]. But mechanized proofs remain quite hard to
produce, requiring both substantial expertise and effort.

One way to make proofs easier to write is to improve the proof assistants, or interactive theorem
provers, in which many of them are written. Indeed, tool builders have made numerous improve-
ments to proof assistants, such as better automation [14, 27, 33]; more direct means for constructing
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proofs, like graphical editing [22, 51]; more intelligible views of proof states [13, 32]; automatic
suggestions [1, 16, 35, 44, 52]; and utilities for proof repair [20, 39] and reuse [41].

Advances in proof assistant support need to be calibrated to user needs and aligned with realistic
user workflows; without these checks, we risk wasted effort and missed opportunities. Happily,
established research methods from human-computer interaction (HCI) can provide just the insights
we need [12]. Prior OOPSLA studies have shed light on user needs in functional programming [29]
and code-generation tools [7], providing valuable insight to shape research. The same kinds of
insights can guide research and development around proof assistants.

We present a study of proof assistant usage that paints a rich picture of the realities of mechaniza-
tion, with a focus on cataloging and interpreting the easy-to-miss, moment-to-moment interactions
of real-world proof work. We observed 30 participants using Rocq [50] or Lean [49] for one hour,
each doing their own work, and spoke with them in real time about the strategies they deployed
and the obstacles they encountered (§3). We offer the following contributions:

e We make four observations about proof assistant usage. Specifically, proof writing involves:

- continual iteration through reaction to and incorporation of feedback (§5),

— challenges when conversing with the proof assistant about minutiae (§6),

— consultation of an array of resources beyond the current proof (§7), and

- consideration of design aspects beyond simply “getting to QED” (§8).

We describe these phenomena using examples from our observation sessions, concretizing
what might otherwise remain “folklore” knowledge and enriching it with descriptions of real
situations proof writers encountered in their work. From these examples, proof assistant
researchers can reconstruct usage scenarios and replay user rationales.

o To further support future research, we identify five opportunities to capitalize on our ob-
servations and advance proof assistant usability, including ideas for how future versions of
proof assistants can support exploratory proving, help proof writers manage details, and
align better with users’ values (§9).

2 Terminology

We assume in this paper familiarity with the basic functionality of proof assistants, but do not
assume deep knowledge of a particular proof assistant — the reader should know what tactics and
proof states are, for instance, but they need not know the behavior of specific tactics in Rocq or
Lean. This section briefly reviews how we use common terms such as these.

A proof assistant is a programming environment that helps users write mechanized (i.e., machine-
checked) proofs. Proof assistant users could write proof terms by hand, but more commonly, they
might instead construct proof terms by applying a series of tactics. Consider this example in Rocq:

Lemma add_0_1 : forall (n : nat), @ + n = n.
Proof. intros. simpl. reflexivity. Qed.

The code between the Proof and Qed is a proof script, and the intros, simpl, and reflexivity within
are tactics. A user would likely write this proof script incrementally; they can evaluate the proof at
intermediate points and see what goal they should prove next. The goal is visually presented to the
user as part of the proof state.

Zooming out beyond individual proof scripts, a proof development consists roughly of definitions,
lemmas, and their proofs. Definitions describe the structures under discussion. Lemmas are the facts
being proven about these structures. (Some lemmas are labeled theorems, propositions, corollaries,
etc.; we use the term “lemma” generically for all of these.) We refer to the union of the definitions
and the lemma statements as the specification of a development.
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We use the phrase proof writers to refer to users writing mechanized proofs in proof assistants.
We sometimes juxtapose mechanized proofs with paper proofs — informal proofs written in natural
language, whether literally on paper or in a text editor.

3 Methodology

In order to understand the realities of everyday proof work, we designed our study to bring us
close to that work. We followed the methodology of contextual inquiry [24] from human-computer
interaction, which focuses on observing real users doing their own work and speaking with them
in real time to understand what they are doing. This methodology complements prior work on
proof assistant usability — such as focus groups [9], experience reports [11], predefined tasks [2, 3],
and log analyses [40, 45] — by offering a detailed real-time picture of the process of proof writing.

3.1 Setting

Scope. We carefully chose the scope of this study — the proof assistants, the specific users, and
the kinds of proof work that we chose to observe — to achieve our goals of understanding the usage
and usability of proof assistants as they are leveraged to support actual work.

We chose to study two of the most widely used proof assistants: Rocq' and Lean. These proof
assistants share the fundamental interaction model described in §2, but the contexts where they
are typically used differ: Rocq, first released in 1989, has a strong user base centered in the pro-
gramming languages community; Lean, released in 2013, has a rapidly growing user base centered
in the mathematics community. This choice of proof assistants allowed us to ground the study in
observations common to both tools, while also observing some experiential aspects unique to each.

We decided to recruit only proof assistant users who were presently engaged in an open-ended
project, excluding, for example, students using proof assistants for homework assignments. This
facilitated our goal of observing realistic proof work.

While participants worked on tasks of their choice, we often encouraged participants to choose a
task where they would be engaging primarily with proof scripts. That is, our observation sessions
(and thus the results we present here) focused primarily on proof-centric work, where users are
writing or modifying proof scripts, as opposed to specification- or infrastructure-centric work,
where they might instead be primarily setting up definitions, notations, etc.

The process of building a proof development can take months or even years. Within the mere
hour we had to observe each participant, we wanted to see the aspects of their work that are
most specialized to the setting of a proof assistant — where they actively interact with the proof
assistant to gradually produce proof scripts. Having said this, what we observed was proof-centric
but far from proof-exclusive. For example, we saw many instances of participants revisiting their
specifications in the middle of a proof (see §5.1).

Participants. We conducted study sessions with 30 participants, 15 using Rocq and 15 using Lean.
We recruited via Zulip forums, personal contacts, and mailing lists.

After each session, we asked participants to report some details about their background. The level
of experience and occupation of each participant are summarized in Figure 1. Rocq participants
tended to be more experienced (median four years) than Lean users (median two years) overall,
which is expected given that Lean is newer. Of the Rocq participants, 12 identified as male, two as
female, and one as non-binary. Of the Lean participants, 14 identified as male and one as female.

We asked participants to select whether they use proof assistants for program verification, PL
metatheory, or formal mathematics, with the option to select multiple options. (There was also

IRocq is formerly known as Cog; the renaming process is recent and ongoing. “Coq” will still appear in some direct
quotations, since the study was conducted prior to the renaming, as well as in the names of various tools and libraries.
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ID Exp. | OCCUPATION ID | Exp. | OCCUPATION
(years) (years)

C1 5 PhD student L1 1 PhD student

C2 2 PhD student L2 2 PhD student

C3 5 PhD student L3 3 PhD student

C4 2 postdoc L4 4 software engineer

C5 8 postdoc L5 2 professor

C6 4 postdoc L6 3 PhD student

C7 1 PhD student L7 7 PhD student

C8 3 PhD student L8 1 software engineer

C9 5 PhD student L9 2 PhD student

C10 4 PhD student L10 3 PhD student

C11 5 PhD student L11 <1 PhD student

C12 4 PhD student L12 <1 professor

C13 3 undergraduate student L13 <1 PhD student

C14 2 (no response) L14 4 research software engineer

C15| 10+ | professor L15 <1 graduate student

Fig. 1. Backgrounds of Rocq participants (C1 to C15) and Lean participants (L1 to L15).

DowmaAINs (in alphabetical order)

Rocq participants | abstract syntax trees, algebraic geometry, concurrent programs, crypto-
graphic protocols, Datalog formalization, dependent types, probabilistic
programs, program logic for OCaml, separation logic, temporal logic
Lean participants | category theory, combinatorics, cryptographic primitives, Fermat’s
Last Theorem, general topology, hash maps, non-Euclidean geometry,
olympiad problems, SAT proof checking

Fig. 2. Examples of the domains of participants’ proof assistant projects.

an “other” option, which was not selected by anyone.) While coarse, these categories give a sense
of the broad areas participants work in. Fourteen of the Rocq participants selected at least one of
program verification and PL metatheory; all Lean participants selected formal mathematics. A table
with the selections in full can be found in Appendix A.

Figure 2 lists examples of the specific domains that, per the participants’ descriptions, their
proof assistant projects belong to; we present these in aggregate to protect anonymity. There was
considerable variation in the kinds of projects participants worked on during their observation
session, allowing us to see many flavors of proof assistant usage.

Ethics Review. Our study was approved by our university’s Institutional Review Board.

3.2 Protocol

Study sessions were 90 minutes with a few minutes of short questions and instructions at the start,
about 60 minutes of observation in the middle, and an interview at the end. We did not set rigid
time boundaries, so the exact breakdown varied from participant to participant; for example, when
feasible, we tried to end observations at a natural stopping point. We arrived at this format after
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some iteration: for the first participant we separately scheduled an interview a few weeks after the
observation; for the second and third participants, we ran closer to hourlong sessions.

Observation. For contextual inquiry studies, Beyer and Holtzblatt [24] recommend that the
relationship between study participant and study facilitator should be analogous to that of a
craftsperson and their apprentice. In particular, the apprentice observes the work in the context
it occurs — rather than hearing it summarized later. The apprentice should also interject with
questions that clarify their understanding, including by offering interpretations of what they observe
and having the craftsperson either agree with or refine these interpretations.

Concretely, participants were asked to (a) share their screen and (b) narrate what they were
doing and thinking as they worked; they were warned that we would interrupt with questions.
Otherwise, they were instructed to do work that they would do regardless of our presence, in the
way they normally would. For example, if they would normally use the internet to search how to
do something, they should (and did) do so.

Interview. After the observation, we conducted a short interview. We did not use a uniform set of
questions across all participants, so that we could instead tailor the questions to what we observed.
Some questions simply followed up to clarify points that were raised during the observation. Others
sought to connect the observed incidents with the participant’s broader experience. If, for example,
we saw a participant spending significant time searching for lemmas, we might ask: We saw that
you used X and Y methods for searching — is there a reason you did not also use method Z? How do
you find the search process generally? Are there aspects you find especially tedious or challenging?

3.3 Qualitative Analysis

In total, we collected about 43 hours of session recordings, with automatic audio transcriptions
produced by Zoom. Two authors heavily revised the transcriptions to correct transcription errors
and embed notes about the actions participants took and code snippets participants worked with.

The first author then conducted a thematic analysis [10] of the transcripts. This analysis involved
an initial open coding pass using the Delve qualitative coding tool [23]. In this pass, the author
reviewed transcripts for interesting patterns of usage and tagged them with codes. These codes were
updated throughout analysis for consistency and completeness. The entire authoring team gave
feedback on the codes by reviewing examples and the code book as a whole during meetings and
asynchronous review. When the first author had coded approximately 75 percent of the transcripts
and informally reviewed the others, another author audited the analysis by spot-checking excerpts
for all codes. The first author then revised the code book to incorporate this author’s feedback and
completed a second (axial) coding pass to apply the new code book.

The resulting organization of themes informs the organization of the paper. All examples were
also checked against the video recordings for accuracy.

4 Overview of Findings

In the four sections that follow, we explore four different views of proof assistants, each contribut-
ing a perspective on what interaction with them looks like. These perspectives are overlapping,
representing processes that are often taking place simultaneously, though at different levels of
resolution and involving complementary features of the proof assistant.

The first two sections characterize the work involved in developing proofs. In §5 we examine
what it looks like when proof work is moving along. We call attention to the ways in which proof
writers leverage feedback from the proof assistant to guide their progress and the ways that they
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seek out actionable feedback from the environment. In §6 we identify challenges that arose —
frequently at the very lowest levels of interaction — as proof writers attempted to communicate
their intent and interpret the outcomes of their actions.

The later two sections characterize usability considerations beyond the proof itself. In §7 we show
that proving requires frequent use of external resources such as lemmas, prior mechanized proofs,
and paper proofs. In §8 we describe how decisions in proof implementation are often influenced
by concerns beyond simply getting the proof to compile, such as the desire to make proofs more
easily maintainable or to make mathematical intent more transparent.

Readers who are frequent proof assistant users will likely find many of the described processes
familiar; our goal is to take these processes that might otherwise be second nature and illuminate
aspects that may have future relevance for work on improving proof assistants.

5 Proofs in Motion

By watching proof writers engaged in their work, we can observe what it actually looks like to
navigate the complexity and uncertainty of the proving process. Viewing their work not in terms
of finished products but as “proofs in motion” gives us insight into how proof writers use proof
assistant feedback to iterate on their proofs, switch between tasks, and try out different solutions.

5.1 Iteration

Writing a mechanized proof is an iterative process. Proof writers frequently realized, due to proof
assistant feedback, that they should change earlier parts of the proof effort, and then propagated
the changes, again with the help of the proof assistant, by replaying and repairing the proof.

5.1.1 Realization. We start by examining moments of realization — when proof writers realized,
in the middle of a proof attempt, that they should not continue the proof as is but instead iterate in
some way, such as by revising the current specification or extracting a new lemma. We focus in
particular how proof writers used the proof state to arrive at these realizations.

Specification Revision. One situation, encountered by 14 participants, was realizing while writing
a proof that the specification being proven should be revised. This often occurred when proof
writers detected that a proof had entered into a bad state. Sometimes, the badness was self-evident:
L4 and L13 both encountered base cases that simplified to the unprovable goal False, leading them
to find and fix errors in their lemma statements.

But other times, proof writers needed to notice something more subtle about their proof state.
C3 narrated that they had a relation RR in an assumption and RR’ in the conclusion of incompatible
types. This mismatch told them that their goal was not provable. C3 returned to their lemma
statement to revise it, and continued to write and rewrite different versions of the statement, often
stepping back into the proof to gauge how it did or did not progress, for the next thirty minutes.

Lemma Extraction. Another situation requiring iteration, encountered by 15 participants, was
realizing mid-proof that a new lemma would be useful. Because they were at or near a place in the
proof where they intended to actually apply the lemma, proof writers sometimes extracted snippets
of the proof state and directly used them in the lemma statement.

For example (see note?), L10 copied this subexpression from the proof state and pasted it as a
starting point for a new lemma:

(fun i => Polynomial.coeff (Polynomial'.toPoly (head :: tail) i))

2Throughout this paper, we provide code snippets to supplement our examples. They are primarily intended to help the
reader visualize what is happening, and relevant details will be called out. It is not important to understand every detail.
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They modified the expression and placed it in an equality, where the right-hand side was what they
wanted the expression to simplify into. The eventual lemma statement said

Polynomial.coeff (Polynomial'.toPoly p) i = p.getD i 0.

L10 thus used the proof state snippet as an input for adding new structural elements to their proof.
In fact, some study participants deliberately advanced their proofs to seek proof states that aided
extraction. C1 realized they needed a lemma near the beginning of a proof, but, after struggling to
write its statement directly, returned to progressing the proof until they reached the “interesting”
part of their proof. They then temporarily copy-pasted a few lines of the proof state below their
lemma so that they could reference it while writing the lemma statement. C12 also did a series
of maneuvers to extract a lemma: first, they copy-pasted a segment of a proof state, including
an assumption H, to form the basis of a new lemma statement; then they realized they wanted
H to be phrased differently, so they returned to the proof and unfolded a definition; finally, they
copy-pasted the new H and edited the proof state excerpt into their desired lemma statement.

C8 went a step further — they set up a “bare-bones, ugly script,” where the explicit purpose was
to discover what lemmas they should extract for future use. “I'm going to see if I can sort of reverse
engineer what I would expect to get as a lemma,” they explained. They started drafting a lemma
in the middle of the script, while the proof state was still visible, before moving the lemma to its
final location. Similarly, C8 also intentionally began proving a statement that lacked necessary
assumptions, so that they could wait for the assumptions to “jump out” as they progressed the
proof and add them then. Further examples of proof writers setting up environments to receive
desirable feedback from the proof assistant can be found in §5.4.

Participants almost always did lemma extraction manually, with one notable exception. C6 used
Rocq’s clear tactic to remove all but one assumption from the context. They then used Company-
Coq’s lemma-from-goal command to generate a lemma from the proof state. Later, they cleaned up
the lemma, e.g., by renaming argument names i to id and i0 to instr, and realized during proving
that they needed an additional assumption. That is, lemma-from-goal replaced some of the manual
aspects of extraction, though naturally it could not eliminate the reasoning required to determine
when a lemma was needed and what shape it should take.

5.1.2  Propagation. We next examine what happened when proof writers finished an iteration cycle
by replaying and repairing proofs after a change. Consider C5, who spent their observation session
experimenting with different ways to resolve a problem with their specification. As is typical to
using a proof assistant, each time C5 made a change, they replayed their file and the proof assistant
informed them where proofs succeeded or failed. In fact, they described the ability to receive such
feedback as “the magic” of working in a proof assistant.

Proof writers experienced this magic whenever they propagated a change to the proofs it affected.
After fixing an error in their lemma statement, for example, L4’s previously failing proof refreshed to
now succeed, providing immediate feedback that the fix was correct. Of course, changes sometimes
instead caused failures, and some failures indicated that the change needed further iteration. When
C1 added a new instance of a typeclass and recompiled the files in their development, they realized
previously working proofs now broke; they needed to limit the scope of the instance so that it
would not be used in those proofs.

Failures also indicated places requiring proof repair. After swapping the sides of a bidirectional
lemma statement, L11 tweaked proofs that broke because they relied on the wrong direction of
the lemma. After a more substantial change to their specification, L9 commented out their broken
proofs and interleaved writing new proof snippets, copy-pasting old proof snippets, and repairing
those old snippets to reflect the changes. This process has many similarities to reusing proofs (§7.3).
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5.2 Context Switching

Proof assistant feedback is helpful in other situations too — in particular, context switching. Proof
writers frequently switched away from a goal and later switched back again. In doing so, they relied
on the proof assistant to maintain the proof state, so they could resume right where they paused.

Twelve participants used Rocq’s admit or Lean’s sorry to temporarily skip a goal and work on a
different one, allowing them to prioritize the goals they wanted to work on. Some prioritization
occurred on the fly, as when proof writers decided to start with an easier case of a proof. L3, for
example, narrated after generating two subgoals, “[The second] goal is easier, so we’ll take care
of that first” Prioritization sometimes also reflected higher-level strategization. C11 explained
that they use admits until they can establish the “general skeleton” of their proof. C7 explained
they chose to prove a more complex lemma before proving the simpler lemma it depended on to
prioritize ensuring the complex lemma statement was correct.

Implicit in these cases is the fact that proof writers know proof assistants can re-supply the proof
state at a skipped goal when the proof writer returns to it. L6 noted this explicitly, saying they
found context switching in a proof assistant to be “much cheaper” than it would be on paper. When
writing paper proofs, the contextual information is “just in the back of your head, and then if you
switch contexts, you forgot what exactly was in the back of your head” When writing mechanized
proofs, the context is automatically provided.

5.3 Small-Stakes Trials

Given the complexity of mechanization, proof writers sometimes had an inexact understanding of
what would or would not be accepted by a proof assistant. In these cases, to figure out the right
way to formulate their next step, they engaged in small-stakes trial and error — by interacting with
the proof assistant as an oracle that provides reliable, instantaneous feedback.

In our study, 18 participants engaged in clear instances of trial and error, which we identified
as such because they narrated their uncertainty about whether their attempt would work and/or
tried a series of similar solutions in rapid succession. These trials were performed in tightly scoped
ways, often at the granularity of a single tactics or arguments to that tactic. Participants sometimes
succeeded in a matter of seconds; other times, after they had cycled through the immediately
obvious solutions, they had to pause and try a different approach.

Though this kind of trial and error behavior suggests the proof writer’s knowledge of the proof
assistant is inexact, knowing which potential solutions to try and how to respond to errors still
reflects substantial expertise. Consider, for example, when C4 was trying to prove an equality where
the only difference between the two sides was n — 0 versus n. They made this series of attempts
over the course of 30 seconds, (where the X indicates steps that failed or did nothing):

1. change (n - @) with n. X 2. change (n - @) with n%Z. X
3. change (n - @)%Z with n%Z. X 4. replace (n - Q)%Z with n¥%Z. V/

That is, they realized that they had type-checking issues after Attempts 1 and 2. Then, they realized
that in fact the change tactic, which tries to automatically convert one expression into another,
would not work at all and that they instead needed to switch to replace, which generates a new goal
n = n — 0. To prove this goal, they made another series of attempts over the course of 40 seconds:

1. auto. X 2. done. X 3. simpl. X 4. auto. X 5. lia. V/

While C4 did not immediately remember that the lia tactic would solve the goal, they did know that
tactics such as auto and done might plausibly solve trivial goals like this one. We observe through
examples such as this one that proof writers were able to use the proof assistant’s feedback to turn
their substantial but inexact knowledge into a working proof.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 92. Publication date: April 2025.



QED in Context: An Observation Study of Proof Assistant Users 92:9

5.4 Sandboxing

We saw previously how C8 deliberately set up their proof environment so that they could use the
proof state to assist with extracting lemmas and assumptions. Four participants additionally created
temporary environments that would better elicit the proof assistant feedback they wanted.

C14, for example, created a temporary lemma whose stated purpose was to “test whether [the
proof assistant] knows” that a particular object is an instance of a particular typeclass. They tried
proving the lemma by exact _, which should succeed if Rocq did know this, but the test failed. They
realized they needed to add an import, the test then succeeded, and they erased the lemma.

In addition to quick fact-checking, temporary environments also assisted with figuring out proof
steps without the clutter of the larger proof context. L4 struggled to show in the middle of a proof
that 10! < 10%, given 1 < 2! and a number of other, unnecessary assumptions. They wrote a
temporary goal with just the essentials: 10¢ < 10 if a < b. Once they figured out this goal, they
ported the proof over to where they were originally. L4 noted that this strategy of separating out a
“self-contained example” helps to “remove some of the distracting hypotheses and syntax,” and has
the additional benefit of sometimes making automated library search tactics (§7.4) work better.

6 Conversing with the Prover

Proof writers constantly encountered challenges conversing with their proof assistants. In one
direction, they needed to speak to the proof assistant in a way it could understand, at sometimes
gruesome levels of precision. In the other, they needed to understand the proof assistant’s feedback,
which could include unwieldy proof states and confusing error messages.

These communication challenges were significant sources of friction. C3 expressed their frustra-
tion with what they called “overhead,” saying, “Fifty percent of my time is figuring out why doesn’t
Coq do the thing that is very obvious, and fifty percent of the time is actually reasoning about the
things which are important” L1 spent the observation session dealing with “nonsense,” saying that
only after an hour of this were they finally ready to address “mathematically meaningful questions.”

6.1 Speaking to the Prover

When speaking to the prover, a proof writer needs to translate the ideas in their head into a highly
precise and sometimes unnatural language.

6.1.1 Precision. Proof assistants are high-precision environments, leading proof writers to fuss
with details that are incidental to the main ideas of the proof.

This commonly manifested as participants knowing what step they wanted to do next (e.g., apply
this lemma, or unfold this definition), but still having trouble invoking the tactic in precisely the
right way. Eighteen participants experienced a clear instance of a tactic invocation problem, which
we identified as such because it was remarked on during their narration or our discussion explicitly.

Sometimes, the source of trouble was a small gap in the proof writer’s knowledge. For example,
L10 wanted to do a case analysis on the expression p.length. Writing

cases p.length

did not work as intended: it led to an impossible goal where the conclusion was only true if p was
empty, but the fact that p.length was zero was missing from the context. During the session, L10
solved the problem by doing a case analysis directly on p, but we determined later in the interview
that it would have worked if they had written

cases h : p.length

to force the necessary information to be retained in an assumption h. That is, L10 knew what they
wanted to do (a case analysis on the length), they knew the tactic to do it (cases), and they correctly
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identified the issue that arose (that the length was not retained as an assumption), but they had to
pivot to a different approach because they did not realize they could just add two characters.

Or, the gap could be the other way around: proof writers frequently needed to supply the proof
assistant with additional information. For example, C8 initially had a simple lemma application of
this form:

iApply lemma_name.
but realized a few steps later that they needed to manually instantiate the seventh argument.

______ (ieq ?LyD)).
They described this solution as a “weird hack” for unification to work as desired.

As another example, C4 briefly encountered an issue where they tried to unfold the definition
of len, which was implicitly used in an assumption. Nothing happened. After some investigation,
they realized they needed to first unfold an outer definition; only then could they unfold the inner
len. C4 remarked that Rocq “really needs little steps by little steps always.”

iApply (lemma_name

6.1.2  Naturalness. Styles of reasoning that are natural to how proof writers want to think about
their proof or write it on paper sometimes feel unnatural in a proof assistant.

Mathematical intent that is easy to express in paper proofs can require extra effort to mechanize.
For example, Lean provides a proof mode, calc blocks, to facilitate proofs involving chains of
equalities. However, while it is very natural in a paper proof to also, say, subtract or divide a
term from both sides of an equation, L13 found that they have to “jump through a few hoops to
make that style of proof fit in a calc block well” For C14, one challenge that seemed “fundamental”
to the formal proof setting was that it can be “quite non-trivial” to convert between equivalent
representations of a definition. By contrast, “When you do things on paper, you can fluidly jump
between different design choices, as long as you know how to make up for it”

A few participants commented on the difference between forward reasoning, where the proof
proceeds from the assumptions towards the conclusion, and backward reasoning, from the conclusion
towards the assumptions. L8 said, “When I think of a properly written proof in mathematics, I think
you should be always going forward and trying to justify what you’re doing. This implies this,
and this is true because of this.” C11 said that forward reasoning seems “a little bit more natural to
human brain reasoning,” but Rocq is “constructed to make backward reasoning super easy.”

C15 also said that, in a proof assistant, it is “usually more tempting” to do backward reasoning. A
downside of backward reasoning is that one might start “using the proof assistant like a video game”
and become narrowly focused on making incremental progress. Forward reasoning, by contrast,
requires active thinking about what the “intermediate assertions” of the proof are. C15 cited ease
of forward reasoning as a reason they like SSReflect [19] tactics.

6.2 Listening to the Prover

Listening to the prover requires just as much translation as speaking: proof states and error messages
can be unwieldy and confusing for those who are not already fluent.

6.2.1 Unwieldy States. Proof states are critical for tracking proof progress, but they can be long
and complex. C1, for example, had at one point 44 lines of variables and assumptions in the context
but noted that only a few lines were relevant.

One challenge with managing proof state complexity, which six participants encountered a clear
instance of, was determining which definitions to unfold and which simplifications to perform so
that the proof operated at a desired level of abstraction. Too much unfolding leads to proof states
that are too verbose. C8 said that, at the start of their project, they wanted to let Rocq “compute
as much as it can,” with definitions being automatically unfolded along the way. But this led to a
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“explosion” of the proof state, to the extent that goals became over 30 lines long. C4 shared that they
found it difficult to find the “sweet spot” when unfolding definitions, where the right details are
exposed but before the proof states become “way too big for you to even understand what it says.”

Too much simplification can also lead to undesirable proof states. L9 encountered a complex
proof state that they transformed into a shorter, simpler state with the simp tactic. The next step
of the proof failed, so they tried removing the simp, and the failing step worked! “Wait, what?”
they wondered. Upon further examination, it appeared that the seemingly helpful simplification
rearranged their state so that typeclass inference failed. That is, even actions that make the proof
state nicer to look at can have bad downstream effects.

Despite challenges with proof state management, we were surprised at how adept participants
could be at interpreting the domain specific details of their proof states. For example, C10 encoun-
tered a proof state excerpted below, describing it as a “big ugly thing”:

(holds
(set_nth @ ([seq row_mx u v ordd i@ | i@ <- enum 'I_(n + 1)] ++ r)
(n.+1 + i) x)

7 more lines

After considering for just a moment, they concluded that it “essentially gives me what I want.”

6.2.2 Confusing Errors. When a proof assistant rejects a proof step, it displays an error message to
help the proof writer debug. Sometimes this message is not actually so helpful. Eleven participants
encountered an error message during the observation that they voiced a complaint about, and two
additional participants discussed difficulties with error feedback during the interview.

Proof writers were occasionally misled by error messages, especially when there was distance
between the root cause and the trigger of the error message. C3 modified an intros tactic to manually
provide assumption names, instead of using auto-generated names. But then a previously successful
apply tactic later in the script, which did not refer to any of those names, now gave a “failed to
unify” error. After a moment of bewilderment, C3 found they had accidentally provided only two
of the three assumption names to intros, causing the proof state to have the wrong shape.

Proof writers also struggled with error messages that exposed low-level details they did not
want to think about. L9 had a rewrite that failed with “motive is not type correct,” which they were
“never really sure how to deal with” They fixed the issue with some trial and error. “I'm very much
a mathematician,” L9 said. “I don’t know much about ... the underlying stuff going on in Lean. I just
try to work around it” Similarly, C7 recounted difficulties with debugging typeclass issues due to
unhelpful error messages:

“The error message just says a whole bunch of stuff — something evars, and lots of
shelved stuff — and you have no idea what’s going on. It doesn’t tell you what’s
missing. ... It tells you at a very low level, oh, we [the proof assistant] can’t unify this,
we can’t find something. But the thing they tell you is not really close to what you
actually need, and that gets really frustrating.”

Sometimes, these low-level details revealed that portions of the proof state that appeared the
same were in fact not. C6 found themselves with a goal of t1 && t2 and a seemingly identical
lemma with a conclusion of the form t1 && t2. They tried to solve the goal by applying the lemma,
only to encounter an error message of this form:

Unable to unify "if ?M17926 && ?M17927 then True else False" with t1 && t2 = true
Where did the if then else and = true come from? As C6 soon realized, the issue was that the goal
and the lemma were implicitly relying on two different, incompatible ways of coercing booleans
into propositions, despite the fact that they looked exactly the same on the surface.
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7 Proof Sources and Resources

Mechanized proofs are rarely written completely from scratch. Instead, the proof writer might adapt
a proof from an existing source, such as by translating a paper proof or by reusing a previously
mechanized proof; they might also rely on existing resources, by searching for relevant lemmas or
by seeking information about proof techniques.

7.1 Translating Paper Proofs

Some mechanized proofs originate in whole or in part on paper — a far less rigorous medium. Five
participants explicitly referenced a paper proof during the observation session, and a few others
mentioned that they do so in the interview. The sources of these proofs ranged from mathematical
papers to textbooks to olympiad problem solutions.

Mechanization generally requires making many implicit details in a paper proof explicit. L4
remarked that paper proofs are often ambiguous as to whether a variable should be universally
quantified or whether it specifically refers to something in the current context. For example, in a
paper proof they translated during the observation session, the proof inducted on n, but also made
intermediate statements that were implicitly true of all n. L4 chose in this case to err on the side of
universally quantifying these statements, so they could more flexibly apply the statements later.

Details about the proof structure, especially if they differ from the proof assistant’s built-in
support, can also be tricky to handle. L2, for example, described a textbook proof that proceeded by
“induction on the absolute difference of these two numbers,” subject to some bounds. L2 noted that,
though complex, this induction strategy is “understandable pretty quickly for a human.” But they
had difficulty expressing it in Lean, needing to rely on (and justify) a custom induction principle.

Though challenging, the particularities of the mechanization process can also be precisely why
mechanization is valuable. L1 observed that, in a mathematical paper, the author might claim the
existence of an algorithm that is implicit in the proof, but the proof might not make explicit what
that algorithm is. “When you migrate that proof into Lean, you actually need to construct it, and
then the construction actually produces the computational content,” L1 said.

L5 noted that one reason they derived value from mechanization is that using Lean is “very
clarifying in terms of taking my intuition for how these objects should work and turning them into
actual, proper mathematical definitions.” The difficulties in mechanizing certain kinds of definitions
are not inherently bad and can instead lead to better design choices. For example, they explained,
they had something “essentially coinductive” but wanted to avoid coinduction both because Lean
did not support it well, “and relatedly” because it is uncommon among mathematicians — the Lean
community tends to focus on supporting techniques that are in common usage. That is, L5 said,
“The expositional problem of how should I write this down in a way that will be accessible to
mathematicians is sort of correlated to what did Lean actually make the effort to support”

7.2 Doing Scratch Work

Proof writers sometimes did scratch work alongside mechanization, either on paper or in a code
comment. For instance, C1 (on paper) and L4 (in a comment) worked out examples of how a
definition should work on small inputs. C1 wrote examples to guide the Rocq definition, while L4
wrote examples after writing the Lean definition, to think through and fix an off-by-one error.

L13 intermittently wrote on paper during the observation session. “I don’t have a strict set of
equations that I'm following step by step to translate into Lean, and so I'm swapping between
thinking about the proof in Lean and then going back to think about how I'd write this as an
informal math proof)” they explained. On paper, they explained, it is easier to do simplifications
and read notation such as fractions.
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C3 left temporary notes such as this one about what their lemma statement meant, using code
comments as a kind of scratch pad:

(* [k] will terminate with postcondition [RR] and invariant [¢] %)

C3 explained that the “big expression here” (the lemma statement) just says that k will terminate.
Writing this fact down “helps me retrieve this fact so I don’t have to reparse” the entire lemma.

7.3 Reusing Proofs

Of course, mechanized proofs can resemble not only paper proofs, but also prior mechanized proofs.
Sixteen participants reused proofs by copy-pasting anywhere from a partial line to an entire proof.

An important aspect of reuse was finding a chunk of code that the proof writer believed would
sufficiently resemble the situation at hand. Proof writers drew connections by identifying concep-
tual commonalities despite surface differences. L3 identified a relevant prior lemma because the
underlying “patterns of computation” in the functions involved were essentially the same, even
though the literal “computational object’s differed. C1 said if they had a proof where, for example,
lists are an instance of the functor typeclass, they could see adapting this to prove that the same
data structure is also an instance of a different typeclass (e.g., lists are traversible functors) or that
a different data structure is an instance of the same typeclass (e.g., trees are functors).

In addition to identifying similarities in proof structure across lemmas, proof writers also iden-
tified opportunities for reuse within the same lemma. C2’s task, for example, was to extend an
existing proof after new typing rules were added. They frequently looked to previously proven
cases, chosen based on their type theoretic knowledge of which “derivations sort of have the same
shape,” such as when “substitutions are in the same places”

7.4 Searching for Lemmas

An extremely common activity when writing a mechanized proof is lemma search: finding a suitable,
previously established fact to advance a proof. Proof writers leveraged existing tools for lemma
search in combination with their — often quite specific — assumptions about the target lemma.

7.4.1 Engines. We start with an overview of the kinds of lemma search features (“engines”) partic-
ipants used, which differed substantially between the two proof assistants.

Ten Rocq participants used the Search command (either directly, or indirectly using an edi-
tor shortcut) during the observation session. Queries contained substrings of the lemma name,
identifiers appearing in the lemma statement, patterns that the lemma statement must obey, or a
combination. As an example of searching by lemma name and text, C1 ran the command Search
binddt “rw” letin, which returns lemmas whose name contains the substring “rw” and whose
statement contains binddt and letin. As an example of searching by pattern, C10 ran a command of
the form Search ?a + _ ==?a + _, which returns lemmas whose statement contains as a subexpression
the == equality of two sums whose first arguments are the same.

On the Lean side, participants used several search engines:

e Nine participants used question-mark tactics, which automatically search for and suggest
lemmas that can be used in the current proof state, subject to some criteria. For example,
simp? tries to return a chain of simplification lemmas.

e Five participants looked for a lemma using the mathlib [30] online documentation, whether
by querying substrings of the lemma name through the search bar or by navigating to a
relevant definition and browsing nearby.

e Three participants used Moogle.ai to do lemma search; Moogle describes itself as a “semantic
search engine” for mathlib that accepts natural language queries.

e Two participants used Loogle, which has similar functionality as Rocq’s Search command.
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Lean participants sometimes mixed-and-matched these mechanisms, moving to an alternative
when they were unable to find the lemma they were looking for. L10 spent 15 minutes searching
for a lemma before determining that it was not yet in mathlib, and writing a pull request to add it.
During this time, they used approaches including simp?, the documentation, and Moogle.

7.4.2  Specificity vs. Fuzziness. When choosing a search engine and formulating a search query,
proof writers had to consider what assumptions they had about the lemma’s name or contents,
and how accurate they thought those assumptions were. Searches with a high degree of specificity
often accelerated the process, where the target lemma was one of just a few results, but even subtle
inaccuracies could cause the lemma to not be included at all. On the flip side, search strategies that
permitted fuzziness were more forgiving of inaccuracies, but also less effective at narrowing results.

Search by Name. An especially specific approach is predicting the lemma name based on naming
conventions. One common convention is for the lemma name to be tied to the definition names
within the lemma statement. C10 reasoned they had “nth in front of set_nth” in their goal, so the
lemma they needed was probably nth_set_nth. (It was!) Similarly, L10 noted that mathlib lemmas
are “named for the sequence of functions that are applied as they appear.”

L15 found eight lemmas directly through the mathlib documentation’s search bar, often by trying
variations in rapid succession; for example:

for the lemma... multiplicity.finite_prime_left for the lemma... Nat.lt_of_succ_le
they searched...  finite_of _prime X they searched...  Nat.lt_off X
multiplicity.prime v Nat.lt_iff succ X

Nat.lt_of succ

Searching by name can be quite delicate. While the mathlib search bar allows non-contiguous
subsequences of the lemma name, it is unforgiving of other discrepancies. We see above that fatal
discrepancies included both typos (“off” instead of “of”) and conceptual errors about the contents
of the lemma (“iff;” used in mathlib for bi-implications, instead of “of;” for single implications).

L15 explained that contributing factors to their success in searching for lemmas by name were
that they had seen many of the lemmas previously and that they were familiar with mathlib’s
naming conventions. Such conventions can require quite fine-grained knowledge: L13, for example,
described difficulties knowing conventional abbreviations, such as “coe” for “coercion,” where
searching for the full word would often not elicit the target lemma.

Search by Pattern. Another approach that enables a high degree of specificity involves searching
by the shape of the lemma, in particular with the usage of search patterns in Rocq. (Although
Loogle does support patterns, we did not observe any Lean participants search by pattern.)

Patterns can fail to match a lemma in subtle ways. When C10 sought a lemma that contained the
subexpression \poly_(i <? n) E1 i, their attempt to search via the pattern \poly_(_ < _) _ did not
return that lemma. They speculated that while the notations match visually, the underlying terms
might differ. C4 said they found it challenging that a lemma that was conceptually equivalent to
their search might be excluded, such as if they flipped the two sides of an equality.

Search by Subject. A fuzzier approach is to search by definition names that should appear within
the lemma statement, but not details about how the definitions should be related.

From L14’s perspective as both a library designer and user, when thinking about what kinds of
lemmas they tend to reach for, they explained that “the most common thing that happens is I have
two concepts, and I want to see how they interact” They used the Loogle search engine to search
for pairs of definitions. As we saw above, Rocq’s Search command also supports this kind of search.
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Combining a more specific approach such as patterns with this approach can greatly narrow a
search. C15 searched for just Permutation before eventually adding a pattern and searching for
Permutation (_ :: nil). With the new query, their desired lemma Permutation_singleton_inj was the
first of eight results, whereas previously it had been the 36th in a long list.

Search by Natural Language. The fuzziest approach of all is natural-language queries.

One situation where support for natural language search would have been useful was that of C4,
who searched for the substring “range” in the source code of the library they were using. They did
not find the lemma they were looking for; later, it turned out that the lemma was in the file they
were browsing, but it did not contain the string “range” in its name or body, since the range was
instead written in the form an inequality. C4 said in the interview that they wished for an engine
that is “much closer to the intention of the search rather than what’s strictly written”

Moogle supports natural language queries for mathlib lemmas, though it appears to be sensitive
to small differences in phrasing. L4, who said they usually reach for Moogle first, searched for
“power of sum equals product of powers.” Unfortunately, this query returned results about power
sets, whereas they wanted lemmas about powers in the sense of exponents. They then changed the
first word of their query to “pow”; the first result was the lemma they needed.

Search in Context. Search strategies vary not only in query specificity but also in context speci-
ficity, the extent a search engine is aware of where a lemma will be used when deciding what
results to include. For example, among Lean’s simp?, Rocq’s Search command, and Lean’s mathlib
documentation, simp?, which returns lemmas only if they can be used in the current proof state, is
the most context-aware; then Search, which returns lemmas only if they are in scope in the current
file; then the documentation, which, as an online resource, returns lemmas regardless of context.

While context awareness certainly helps with reducing the quantity of results, lack of context
awareness can also be useful. L10 found a lemma through the mathlib documentation that they did
not initially find through simp?, since it was not yet imported. C9 found a lemma with the Search
command at one point in the proof and then did not use the lemma until minutes later, after they
had performed the necessary rewriting. When C4 searched for lemmas about one definition, they
noticed that many results contained expressions where this definition was composed with another.
They changed their goal to match this form and then were able to use a lemma from the query.

7.5 Seeking Other Information

Proof assistant users, even experienced users, may need to learn about tactics and techniques they
are unfamiliar with while writing a proof. This can be a difficult process: L8, for example, said they
find tactics to be “a black box” and that they need to learn them on a “tactic-by-tactic basis,” as
opposed to being able to learn “general principles.” To facilitate information seeking, participants
leveraged a combination of documentation, examples, and community channels.

7.5.1 (Not) Using the Documentation. C8 said that in the past few months they had used the Rocq
reference manual “a dozen times a week at least” C2, on other hand, said, “I generally don’t tend to
read a lot of the documentation and just sort of figure out what’s going on with whatever tactics
just by experimentation.” C2 briefly accessed documentation about the syntax of the SSReflect
library during the observation, but then decided, “I don’t think I need to understand it”

It can be quite challenging to guess what a query for an unknown tactic or technique would
look like. When asked about their experience with having an abstract idea of what they wanted to
accomplish and finding the tactics to do it, C8 said they found this process to be “very difficult”
and that they “spent maybe a week trying to do something once.”
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An alternative to querying the documentation is simply reading it. L13 shared, “I will sometimes
just scroll through the tactics list and read about some that exist, and then hopefully in the future, I
will remember that I have learned about a new tactic, and maybe I'll be able to use it” In fact, they
said, “Rarely do I discover tactics while I'm actively coding.”

7.5.2  Using Examples. Proof writers made use of code examples, both by reading textbook examples
and by adapting snippets from library source code.

L10 and L13 used examples of the cases and induction’ tactics, respectively, to help them figure
out the correct syntax. In L10’s case, they found the example directly in the documentation, by
hovering over the cases tactic in the VS Code editor, and in L13’s case, they found the example in
the Mathematics in Lean online textbook [6].

When creating a new typeclass, L12 copy-pasted a mathematically adjacent typeclass definition
already in mathlib and modified it for their use case, since they did not know all of the syntax “off
the top of [their] head” L12 said that because they are relatively new to Lean, they tend to rely on
“looking at the patterns that other people who are writing this code are using.”

The process of adapting an example can be elaborate, as in the case of L8, who was seeking to
learn how to develop a custom induction principle to reduce repetition in their proofs. Since they
remembered seeing something similar in the Lean source code for division, they navigated to that
file and located a proof that used div.inductionOn. They copy-pasted the proof into a new file and
developed a modified version that did not use div.inductionOn. Indeed, they explained that their
strategy was to take an example using the desired, “idiomatic” approach and work their way back
to the “wrong” approach, so that they could see a connection that would then help them move
their code that used the wrong approach towards the idiomatic approach. (The observation session
ended while they were in the midst of the second step.)

Part of the complexity of this situation can perhaps be attributed to the fact that the example
L8 used was not an intentional, pedagogical example of the technique they were trying to learn,
but rather a piece of source code that they happened to know existed. L8 said they wished there
were more examples, especially ones that are not too basic, as they would be difficult to generalize
to more complex situations, but also not too advanced, as they would be difficult to understand.
Similarly, C8 wished for more examples of “more hardcore tactic language uses” They cited the
repository coq-tricks® as the kind of resource they wished there were more of.

7.5.3  Asking Others. Seven participants explicitly said they seek help from other proof assistant
users, whether in their local community or by asking (or browsing) on forums such as Zulip.

C8 commented that they are “very lucky” to have more experienced colleagues to ask for
assistance. “Without the people in my office building, I would have had a lot more trouble going
from novice to intermediate,” they said. At one point during the observation, L13 was trying to
unfold a definition only on the left-hand side of their equation. They first went to the documentation
for the unfold tactic and then, not seeing a solution, they searched in the Lean Zulip for “unfold
left hand side” From a thread asking the same question, they found the suggestion to use conv_lhs,
which worked. L12 said they often post “silly questions” on the new members stream in the Lean
Zulip, acknowledging that they feel comfortable doing so, but this may not be the case for everyone.

7.5.4 Copilot. We observed three participants using Copilot, an Al assistant in Visual Studio
Code that suggests code snippets, accepting approximately four, seven, and 18 Copilot suggestions
during their observations, respectively. Because programmer-Al interactions are an area of research
worthy of separate examination [7], we do not discuss Copilot further here.

3https://github.com/tchajed/coq-tricks. Its README notes, “Some tips, tricks, and features in Coq that are hard to discover”

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 92. Publication date: April 2025.


https://github.com/tchajed/coq-tricks

QED in Context: An Observation Study of Proof Assistant Users 92:17

8 Beyond QED

While the headline benefit of a mechanized proof is ensuring that some top-level statement is
true, we saw that proof writers also cared deeply about the proof itself. Throughout our study
sessions, participants described the numerous, subtle, and sometimes conflicting qualities they
value in proofs, beyond simply “it compiles.” In this section, we focus particularly on maintainability,
communication of mathematical ideas, and compliance with conventions.

8.1 Maintainability

Proof scripts change over time, in response to a variety of factors. In light of this, 13 participants
expressed concern about maintainability of their proofs as they evolve.

A core aspect of maintainability is robustness to failure. L2 made a proof more robust against
changes in its underlying definitions by enforcing strict abstraction boundaries. During the session,
they initially wrote a proof using the rcases tactic, whose behavior relies on the implementation
details of the definitions involved; then, they refactored the proof to use a lemma that preserved
the abstraction barrier between the proof and these details.

But participants wanted more than just robustness to failure — they also wanted to ensure that, if
the proof does fail, it does so in a way that is conducive to understanding and fixing the failure. C5
said they prioritize structuring a proof so that it “breaks exactly in the place where things actually
break” C5 showed an example of a proof in their development structured like the one below on the
right and explained why they preferred it to the alternative on the left.

Proof. Proof.
induction H. induction H.
* 1: constructor. 1: now constructor.
(rest of proof) (rest of proof)

In this context, constructor alone solves the first goal, so the now is unnecessary. But suppose a
change were made so constructor no longer solved the goal. The right proof would fail precisely at
Line *, since now fails if the goal is not solved, while the left proof may fail at some unknown point
later in the proof. C5 proactively uses “terminators” such as now to make failure localization easier.

The relationship between automation, robustness, and ease of fixing failures is complex: in some
cases, automation improves robustness, obviating the need to fix failures; in other cases, it causes
proofs to break in ambiguous and less local ways. Consider, for example, Lean’s simp tactic and
variants. The simp tactic automatically applies known lemmas in a black-box way. Alternatively,
simp only [lemmal, lemmaz2, ...] applies only explicitly provided lemmas.

Is simp or simp only preferable for maintainability? It depends! L9 encountered an error in the
last line of a previously working proof:

simp only [vcomp_eq_comp, comp_app, id_app', id_comp].

Upon examination, they realized that they now needed to refer to the lemma comp_app as Nat-
Trans.comp_app instead, likely due to a namespace change. They could just make the fix within the
simp only, but they opted to instead replace the line with just a simp, which automatically figures
out the correct name. (Immediately after, they further refactored their proof to replace simp and
the line preceding in their proof with the proof search tactic aesop_cat.) That is, more automated
tactics are sometimes preferable because they are more robust to certain kinds of changes.
Conversely, simp only may be preferable in other cases. L10 briefly had a simp in the middle of
their proof, but they converted it into a simp only. They explained that they did not want to leave
a “raw simp in the middle”, which simplifies the goal but does not solve it, since if the behavior
of simp changes internally, then this can cause problems later in the proof. (This is consistent
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with Lean’s official recommendation* to avoid “non-terminal” simps.) That is, more restrictive, less
automated tactics such as simp only may assist with failure localization.

8.2 Communication

Participants also cared what their proofs communicated mathematically.

Organization. One means of communication is to indicate the logical units of a proof. The
following examples demonstrate how considerations around how to organize these units might
play out at the granularity of tactics, logical proof steps, and lemmas.

At the tactic level, we asked C6 why they wrote intros ; cbn despite the fact that the first tactic
only generated one subgoal (so the semicolon was not needed). They answered that they liked
to chain together series of tactics that represent “one chunk of thought” so that they would be
evaluated as a single unit when stepping through the proof.

At the level of logical proof steps, L7 showed us the proof outlined below, which was the result
of a refactoring to better communicate its structure:

have H1 i := by

11 lines of proof
have H2 i :=

7 lines of proof, which use H1
2 lines of proof, which use H2

Originally, the proof was written “upside down.” They started with the last line above, which
created a goal corresponding to what was now H2, and in the course of proving H2, they needed to
prove what was now H1. They noted that the “bulk of the work” happened in the proof of H1, and
this version of the proof allowed them to “logically separate” that work from the rest of the proof.

Logical proof steps could also be demarcated by comments, as C1 did by interspersing (* Merge
LHS *) and (* Merge RHS *) between the lines of the proof. Many of their proofs naturally proceed
in “stages,” where they performed rewrites on one side of an equality and then on the other side.
The rewrites could be done in any order, but instead of “freewheeling,” C1 said they had learned to
structure their proofs in this organized way to improve understanding. Similarly, they chose not to
incorporate heavy-duty automation, since they wanted to be able to step through the steps of their
proof. “I really specifically am trying to record how that equation gets proved,” they said.

At the lemma level, C5 focused on communicating the content of their proof not through tactic
scripts but rather lemma statements; they aimed to separate out “readable and self-contained”
lemmas that form “sensible logical units” Then, they explained, “The big proof by induction is not
very interesting, usually. It’s about combining all of the things that you have already”

Intent. Beyond structural considerations, proof writers also tried to make stylistic decisions
that signalled their mathematical intent, such as choosing between multiple viable tactics. L4
discussed goals that could be solved by the omega, linarith, or positivity decision procedures. Of
these, “positivity is less powerful, but it expresses more intent,” since proofs by positivity must use
“straightforward” reasoning. Indeed, they said, “If 'm reading a proof and I see linarith or omega,
I'm like, I don’t want to try to dig into why this is true. 'm just going to trust it. Whereas this
positivity, it’s telling me that you can definitely just glance at this and see what’s going on here”

As another example, L2 discussed why they opt to use the exact tactic to supply a lemma in
certain situations instead of using apply, which is more powerful overall. “The idea is, when you
exact, that’s signaling that you’ve got the final thing that you want,” they explained. “You can

4https://leanprover-community.github.io/extras/simp.html#non-terminal-simps

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 92. Publication date: April 2025.


https://leanprover-community.github.io/extras/simp.html#non-terminal-simps

QED in Context: An Observation Study of Proof Assistant Users 92:19

apply a number of theorems, but your last step should almost always be an exact. It just signals to
whoever’s reading the code, now we have the thing”

The fact that proof writers sometimes avoid maximally powerful tactics in favor of ones that
convey their intention is reminiscent of what we saw above, where proof writers sometimes
eschewed maximally powerful automation in favor of techniques that streamline understanding
and fixing failures.

Concision. Sometimes proof writers care not only about the content of a proof but also how
concisely it is written. To achieve better concision proof writers may retroactively rearrange their
code to avoid unnecessary steps. L3, for example, was writing a proof of roughly this form:

match h with

| casel => simp [h, defn]

| case2 => simp [h, defn]

They tweaked it to unfold defn before the match, allowing them to remove the two highlighted
steps. L3 described this as a “neat little trick” to do some “proof golf” (cf. code golf).

Concision can itself be the end goal — some participants expressed that shorter proofs simply
feel nicer and cleaner — but it can also tie in with the above theme of signaling intent. Throughout
the observation, L9 regularly sought opportunities to decrease the length of their proofs. They
explained that the proofs they worked on that day corresponded to just one line of mathematical
reasoning, so they wanted the mechanized version to be similarly concise. For more complex
proofs, they still valued concision, since they want their mechanized proofs to match the number
of high-level steps in the “normal math proof” as closely as possible. “A shorter proof signifies that
every step I'm taking really matters. It’s really quite crucial that I do all of these [steps],” L9 said.

8.3 Conventions

Mechanized proofs do not exist in isolation; neither do proof writers’ values about what makes a
good proof. In particular, they may hope to integrate their work into a larger project, which may
in turn come with conventions that contributors are encouraged or required to follow. Even in
self-contained projects, users still find utility in good conventions.

Sources of Conventions. For Lean, the dominant context proof writers work in is its mathematical
library, mathlib. Nine participants explicitly mentioned that they have contributed or plan to
contribute to mathlib — indeed, three participants modified their code in response to reviewer
comments on a previous pull request during their observation sessions.

For Rocq, the landscape of libraries is more fragmented. C10’s work builds on top of and should
eventually be integrated into mathcomp, a mathematical components library, and C14 was doing
the same but for Cog-HoT T, a homotopy type theory library [8]. Several participants used SSReflect
tactics to varying extents; this influenced their proof style.

Proof writers have also established and followed their own conventions. Doing so might involve
being consistent with collaborators on the same project or, even in the absence of collaborators,
being consistent with themselves, to keep a large development organized.

Examples of Conventions. Many of the conventions involved maintaining consistency in how
lemmas within a library were named, formatted, and organized. As described in §7.4, participants
benefited from their knowledge of naming conventions when searching for lemmas. When writing
new lemmas that they hoped to merge into libraries like mathlib, participants were also careful to
follow library conventions.

Not only can conventions aid lemma search, conventions (or the lack thereof) can also affect
lemma usage. C15 said they found it frustrating when libraries are inconsistent about, say, which
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arguments to a lemma are implicit or explicit, since this forces them to look up the statement of
the lemma when using it rather than just proceeding on instinct. Lack of consistency “makes it
harder to fit the library in your head”

Conventions can also support specific technical aims. In response to comments on their mathlib
pull request, L11 reversed some lemmas so that the simpler side was on the right of an equality or
if-and-only-if. Since rewrites in Lean are by default from left to right, this convention means that
when simplifying using such lemmas, “things actually become simpler” C9 wrote a proof using
tactics from a library called Iris [25], but then decided to rewrite the proof to not use those tactics.
Doing so allowed them to remain consistent with their convention to not use Iris tactics in this
part of their proof development (and avoid the extra import to access the tactics).

Cultures of Proof. When projects such as mathlib establish conventions about what constitutes
good style, they affect not only the proofs that are written but also the proof writers themselves.

One positive impact of this phenomenon is that proof writers might be alerted through reviewer
comments to new techniques and tricks. For example, one comment to L12 informed them that
have statements could take parameters, allowing them to refactor the proof snippet on the left into
the one on the right.

have hU : V z, ... have hU (z) :
intro z // no intro

L12 said they liked the new version “much better,” since it allowed them to rid the proof of the
“boilerplate-y” line with the intro tactic.

Conventions can also suggest to proof writers what the community values. L2 discussed how their
impression is that mathlib values making proofs more succinct, such as by converting tactic-based
proofs into term-based proofs, but in their opinion, this can come at the cost of readability. L2 said
they sense a cultural undercurrent: they feel there is a “bro culture” around “how unreadable can I
make my code,” since making a proof shorter “makes it look like you know what you’re doing”

8.4 Other Considerations

Easy maintenance, clear communication, and consistent conventions were the proof values partici-
pants espoused most frequently and enthusiastically, but other values were mentioned as well.
One such value was performance of proof-checking. L4 noted, for example, that they sometimes
take into consideration the performance penalty of using high-powered search tactics like omega
and aesop [27]. Performance can be difficult to gauge accurately: for example, L8 said they assumed
term-based proofs should always be faster than their tactic-based counterparts, but were informed
by Lean developers that this was not necessarily the case, though L8 was not sure exactly why.
Proof writers may also care not just about how the proof script behaves but also the characteristics
of the underlying proof term. C14, for example, was working with homotopy type theory, where
the path of equalities between terms matters, not just the fact that the terms are equal. For this
reason, C14 said, they preferred to avoid tactics like rewrite, which sometimes produced a path of
equalities that solved the goal but made the proof term difficult to work with in later proofs.

9 Discussion

We now distill our study findings into some high-level takeaways about patterns of proof assistant
usage. For each observation (OBS), we provide one or more recommendations (REC) for future
directions of proof assistant improvement.

OBS1: Proof states inform more than just the next step: proof writers interpret the state within the
broader context of their proof effort and leverage it to direct iteration.
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Prior to this study, we might have said that proof writers interact with proof assistants by
writing a proof step, seeing the updated proof state, and using that state to determine the next step.
Certainly this is part of the picture, but not the whole picture.

We saw in §5 the iterative, non-linear nature of proof writing. Proof writers may look at a proof
state and realize that, rather than continue to make local, linear progress, they should redirect their
attention elsewhere. They may realize, for example, that the goal is unsolvable, so they need to
revise their specification, or that it should be solved elsewhere, so they should extract a lemma.
When they are ready, they return to their proof to see the (perhaps changed) proof state again.

These iterative cycles happen so often that it is easy to take them for granted, but they are worthy
of a closer look, since they demand that proof writers actively and effectively decide what to focus
on and how to use the proof assistant’s feedback.

REC1: Center iteration on proof ideas as a core strength of proof assistants.

The proof assistant’s constant feedback helps proof writers explore, clarify, and refine their
reasoning as they progress in their proof. We suggest centering and building on this strength in
future proof assistant development.

We should re-examine proof assistant affordances in light of the observation that proof writing
occurs non-linearly. For example, modern IDEs often provide proof state diffs, which highlight
what is new about each proof state since the previous step. But, due to the non-linear nature of
much proof writing, the actual previous step in the proof writer’s workflow is not always the literal
preceding step in the proof script; the most recent edit — which the proof writer may instead want
to see the effects of — could be a change to an earlier part of the proof or the specification itself.

We should also pursue opportunities to give the proof assistant a more proactive role in the
iteration process. We saw that proof writers regularly need to draw connections between parts
of their proof state and parts of their proof development. If something looks askew, they need to
locate the source of the issue. The proof assistant could assist the proof writer with drawing these
connections, for example by allowing them to query why their proof state looks a particular way, a
la Whyline [26]. More broadly, we believe the proof state should not be viewed as a static projection
of information, but rather as something that the proof writer may want to interactively probe.

OBS2: Dealing with the minutiae of mechanization is tedious, and moreover, it diverts the proof writer
from the conceptually interesting facets of their proof.

We saw in §6 that it is not enough for the proof writer to know what, conceptually, the next step of
their proof should be; they must also know how to express this step in the proof assistant’s language,
often via tactics. And it is not enough for them to know what tactic to use, they must also know
how to invoke it with precisely the right arguments. Furthermore, if the assistant rejects the proof
attempt, the error message it returns may be yet another cause of difficulty. These complications
demand additional time and effort from the proof writer — even when they understand at a high
level what they need to do next to advance their proof.

Indeed, as we witnessed participants battling with the proof assistant over the details of their
proofs, we were especially struck by comments about how this “overhead” of mechanization
(C3) prevents the proof writer from focusing their attention on the “mathematically meaningful
questions” (L1) surrounding their proof.

REC2: Make the level of detail proof writers have to deal with less overwhelming.

Of course, automation that solves goals outright is excellent — reducing the level of detail the
proof writer has to deal with to zero — so we should continue to invest in improving push-button
automation. But when fully automating a proof is not feasible, we should also invest in approaches
that take advantage of the considerable knowledge proof writers possess about how to progress
their proofs. For example, if a proof writer knows which tactic they want to use and roughly what
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they want to do with the tactic, but not how to instantiate it, the proof assistant could collaboratively
help fill in these details.

We should also support proof writers in deferring uninteresting details while they outline the
mathematical core of their proof. Currently, proof writers can use admit or sorry to skip goals. To
go further, perhaps they could specify entire classes of goals they want to skip — anything about
substitution, for example. Allowing users to construct a barrier between minutiae and core proof
content could further alleviate the friction associated with using proof assistants.

OBS3: Effective proof writing requires effective use of prior work.

Proofs build on proofs. As we saw in §7, proof writers take advantage of prior work by themselves
or others, often in the context of searching for applicable lemmas and reusing related proof snippets.
While the participants we observed were generally adept at these tasks, they implicitly relied
on specialized knowledge of the proof developments or libraries they were working with. With
lemma search, for example, participants often relied on their knowledge about fine-grained naming
conventions of the libraries they are using,.

REC3: Ensure proof writers are taught not only how to write stand-alone proofs but also how to seek
and incorporate external lemmas and ideas.

Effective search, reuse, and other information seeking within a proof development can be a
significant accelerant to proof writing, but these skills require experience and familiarity. When
addressing barriers to proof assistant competency, we should consider not just “local” proof writing
skills such as tactic usage but also proof engineering [38] skills that grapple with the larger-scale
contexts that proof writing occurs within.

For example, the popular Software Foundations textbook [34] for Rocq proceeds from first prin-
ciples by re-implementing standard definitions and lemmas, and commands like Search are only
briefly introduced. This pedagogical approach makes sense when teaching the basics of formal
reasoning, but to prepare users to enter real-world proof developments, they should additionally
be taught how not to reinvent the wheel but instead find and reuse it.

OBS4: Although their primary product is machine-checked proofs, proof writers still value how their
design choices impact the humans (themselves included!) that interact with their proofs.

Writing natural language proofs is an expressive, often creative endeavor. One might describe
such proofs as clear, convincing, or elegant — or the opposite. What about mechanized proofs?
Mechanization is primarily a communication process that unfolds between the proof writer and
the proof assistant, not between the proof writer and potential readers. We might suppose, then,
that proof writers do not care about such aesthetic or communicative concerns.

But they do care! In more subtle, technical ways, yes, but we saw in §8 that proof writers make
intentional choices that reflect what they value in a proof. They may opt, for example, to write
proofs so that maintainers — often their future selves — can understand and repair failures. And
they may consider what their proof conveys mathematically, at various levels of granularity — from
its high-level organization and lemma structure to low-level decisions about which of several
interchangeable tactics to use.

Moreover, proof writers may care about whether their proofs conform to the conventions
established by a larger proof project. For many Lean users, this project is the mathematical library
mathlib. Participants viewed mathlib both as a source of lemmas and tactics that they could use
within their developments and also as a guide on how they should style their proofs.

REC4: When designing tools, value what proof writers value in their proofs.

There is a recent push towards tools that make humans responsible for less of the mechanization
effort, such as tools for automatic proof generation [1, 16] and repair [20, 39]. When designing and
evaluating such work, we should consider not only whether the produced proofs compile, but also
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whether their contents match the user’s preferences. It might matter, for example, what tactics the
proof uses, how concisely it is written, or how well it matches conventions.

REC5: Remember that mechanization is also an expressive endeavor.

Throughout the mechanization process, the proof writer makes decision after decision about
how best to express their proof. While many of these are for the benefit of the proof assistant,
some are for their future selves or others in their community. We advocate that mechanized proofs
be recognized not just as an compilable chunk of code but as what could be the carefully crafted
artifact of a substantial undertaking.

To this end, we are excited by projects targeting the communication of mechanized proofs,
including both curated collections (e.g., Archive of Formal Proofs [15]) and tools for generating
interactive, web-viewable proof scripts (e.g., Alectryon [36]), for creating proof visualizations (e.g.,
Lean widgets [32]), and for embedding richer text comments within a proof file (e.g., cog-Isp [46]).

Suggestions for Further Studies. Our study required participants to be working on an open-ended
project, which enforced a minimum level of experience with proof assistants. Further studies might
instead observe novice proof assistant users in the process of learning how to use the proof assistant
itself. What barriers do they encounter? Are present pedagogical methods and materials adequate
for addressing those barriers? (We suggested in REC3 that they may not be!)

Our study observed proof writers doing work of their choosing, leading to a wide range of
observed tasks that, in turn, allowed us to take a broad view of proof assistant usage. Further studies
could examine specific aspects in more depth, such as specification. After all, a proof is only as
useful as the specification it validates — how do proof writers gain confidence that they are proving
what they intend to prove? What design choices do proof writers make about how to phrase their
specifications?

Our study observed individual participants within a set block of time. One side effect was that we
observed only asynchronous interpersonal interactions — reading an old Zulip thread, or making
a note that they should ask a colleague something later, for example. What do these interactions
look like live? If, say, a proof writer is asking someone to help resolve an issue with their proof,
how do they explain the issue, and how does the other person obtain the necessary context about a
proof they did not write? More broadly, do proof assistants facilitate mathematical communication
(e.g., since the proof state can be accessed at any step) or hinder it (e.g., since tactics can be harder
to read than natural language)?

10 Related Work

Our findings deepen those from prior studies of proof assistant usability.

Some prior studies have observed users on provided tasks. Aitken et al. [2] observed seven users
of HOL [47] proving the same theorem about lists. They found that participants that were more
frequent users of HOL tended to finish the task faster and interact with the proof assistant more.
They noted that there was some, but not much, revision of prior proof steps, which may reflect
the simplicity of the task. Aitken and Melham [3] ran trials with six users of HOL and six users
of Isabelle [48], each on a single task. They cataloged user errors, such as writing invalid syntax,
unintended failures of proof steps, and difficulties recalling correct function and theorem names.
We observe these errors as well in our observations of real work, highlighting how developers use
search functionality and convention to overcome challenges in recalling names, and additional
minutiae of working with the proof assistant like understanding state and error messages.

Other studies have analyzed real-world proof work through log analyses. Ringer et al. [40]
collected a month’s worth of data from eight Rocq users. Their findings, like ours, emphasize the
iterative nature of proof development, where the logs showed that users revised specifications after
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a failed proof attempt, for example. Our section on Proofs in Motion (§5) describes these patterns of
iteration and revision, detailing the work involved and the aspects of the proof assistant that users
lean on. Staples et al. [45] analyzed project management data from developments related to the
L4.verified development [5] in Isabelle. Their main observation is that proof size is highly-correlated
with “effort” (as reported weekly by managers). Our study offers a deeper look at how proof writers
progress, or fail to, during a particular session of proof work.

Another approach to investigating usability is focus groups. Beckert et al. [9] conducted a focus
group of five Isabelle users. Their participants reported difficulties with figuring out the right
tactic and tactic arguments. They also said that they often wanted to refactor proofs to improve
understandability, though the situations where this occurs were not elaborated on. We offer concrete
examples of issues around precision and communication.

Other prior work has shared its authors’ own experiences working with proof assistants and those
of their team. Andronick et al. [5] and Bourke et al. [11] reflect on the challenges posed by large-
scale proof development. They also point out challenges around local trial and error, debugging
broken proofs, and enforcing conventions, as do we. The projects in these papers (L4.verified and
Verisoft [4]) have several hundred thousands lines of code, which is substantially larger than the
developments our participants typically worked on. As a result, important considerations for them,
such as proof-checking performance and domain specific automation, are not core considerations
of the present paper.

QED at Large [38] surveys work related to proof engineering — the intersection of proof assistants
and software engineering. Several of the processes we mention in this paper are also noted in broad
terms in their survey, such as proof repair and proof reuse.

Lincroft et al. [28] mined data from the implementation repositories and community forums for
Rocq, Lean, and Isabelle. Their study focuses on broader contribution patterns (e.g., the lack of
cross-pollination between proof assistants) rather than individual user experiences.

Zooming out from proof assistants, there has been extensive qualitative user research on the
software development process generally — e.g., on refactoring [31], code search [42], and code
generation [7]. There is also a blossoming literature on this kind of work in the area of formal
methods — e.g., on characterizing the experience of working with property-based testing methodol-
ogy [18], on specification languages [21], on correctness-oriented languages like Rust [17, 53], and
on the functional language paradigm upon which they are based [29]. This literature has identified
both obstacles to picking up this tooling and evidence of its successful adoption. Our intent in the
present paper has been to help map out the space of challenges and possibilities for proof assistants
with an analogous study.

11  Conclusion

We conducted an observation study of 30 users of Rocq and Lean doing their own proof work, using
the methods of contextual inquiry. Through this study, we developed a nuanced understanding of
what usage of these proof assistants looks like in practice, leading to recommendations that we
hope will help improve the future usability of proof assistants.

Data-Availability Statement

Our artifact is available on GitHub® and Zenodo [43]. It contains two documents. One is a detailed
recounting of our study methodology, including materials such as recruitment messages and consent
forms. The other is the codebook we used in our thematic analysis of study transcripts.

Shttps://github.com/jwshii/qed-context-artifact
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A More on Participant Backgrounds

ID | VERIF | LANG | MATH ID | VERIF | LANG | MATH
C1 v L1 v
C2 v L2 v
C3 v v L3 v v
C4 v L4 Vv
C5 v v L5 v
Cé6 v v L6 v
Cc7 v L7 v
C8 v v L8 v v
C9 v v L9 v
C10 v v L10 v v
Ci11 v L11 Vv
C12 v v v L12 v
C13 v L13 v
C14 v L14 v v
C15 v v v L15 v

Fig. 3. General areas participants use proof assistants for: program verification, programming languages
metatheory, or formal mathematics. As explained in §3.1.
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