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Abstract
Proof assistant users rely on automation to reduce the burden
of writing and maintaining proofs. By design, automation
hides the details of intermediate proof steps, making proofs
both shorter and more robust. However, we observed in a
need-finding study that users sometimes do want to examine
the details of these intermediate steps, either to understand
how the proof works or to pinpoint where it has broken. To
support such activities, we describe a proof deautomation
procedure that reconstructs the underlying steps of an au-
tomated proof. We discuss the design considerations that
shaped our approach to deautomation — in particular, the
requirement that deautomation should remain informative
even for failing proofs — and we propose a deautomation
algorithm and a proof-of-concept implementation.

1 Introduction
Automation is a powerful weapon in the fight against the
overwhelming minutiae of interactive proof. Proofs that rely
on automation are written at a higher level of abstraction,
improving concision and robustness. In Coq [29], automation
constructs include higher-order tactics (tacticals), auto and
its relatives, and user-defined custom tactics.

However, automation also makes proving less interactive.
When working with little or no automation, users can see
the proof state at each step. With more automation, single
steps become leaps and bounds, eliding many intermediate
states that the user might need to understand how their
proof works or why it doesn’t. Indeed, there is a fundamen-
tal tension between making intermediate steps visible and
automating them away.

To reconcile this tension, we describe a proof deautomation
mechanism that reifies the underlying steps taken by an
automated proof. Intuitively, the deautomation of a proof
involves unrolling its automation so that the steps the proof
assistant takes are made explicit and individually executable.
We also devote special attention to ensuring that broken
proofs can be deautomated and annotated to support rapid
recognition of causes of failure.

Our conception of deautomation is similar to the ones em-
bodied in the Tactician tool [1] for HOL Light, which unfolds
semicolon-chains to help with proof refactoring and under-
standing, and in an algorithm for Coq scripts described in
Olivier Pons’s Ph.D. thesis [24]. Our deautomation procedure
goes further, however, handling a wider range of automation
constructs and focusing attention on how these constructs
affect deautomation of failing proofs.
We study deautomation on a core set of automation fea-

tures drawn from Coq’s Ltac language [11]. Concretely, we
offer these contributions:

• We characterize users’ needs around understanding
proof automation, through observations from an in-
terview study with practicing Coq users (§2).
• After introducing a motivating example (§3), we dis-
cuss several design considerations for deautomation
(§4). In particular, deautomation should be informative
even for failing proofs.
• We develop an algorithm for deautomation that cap-

tures the execution of the original script and extracts
a step-by-step view of the proof, and we establish its
fundamental correctness properties (§5).

We describe an implementation of our theory as a proof-of-
concept VS Code extension (§6). We close with an extended
example (§7), a survey of related work (§8), and a discus-
sion of limitations (in particular, around backtracking and
existential variables) and ideas for future work (§9).

2 Need-Finding Study
Prior studies have broadly suggested that users desire greater
understanding about proof automation [4, 27], but has not
deeply explored what, concretely, users want to understand,
or where, exactly, are the sources of friction that frustrate
such understanding. To gain better insight into these ques-
tions, we conducted a need-finding interview study. In human-
oriented programming-languages work, such studies both
document the status quo and illuminate opportunities to
better help users do what they need [8].
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Our study consisted of interviews with eleven participants
(a typical sample size for an initial need-finding study of a
human-facing programming system [3, 17, 19, 20, 30]). We
opted for interviews rather than a survey or observations,
anticipating that this would allow us to investigate users’
varying experiences with automation in depth. We recruited
participants from personal outreach, mailings, and word
of mouth. All eleven were experienced Coq users. Seven
were Ph.D. students, two were undergraduate students, one
was an engineer, and one was an academic researcher. The
interviews followed a semi-structured guide focusing on
participants’ experiences writing, reading, and maintaining
automation. Participants were asked to share examples from
their own proof developments.

After the interviews, we performed a thematic analysis [6]
where one of the authors reviewed their notes from all in-
terview sessions. Anecdotes and quotations were checked
against recordings of each session. This process led us to the
idea of deautomation that we present in this paper.
In the rest of this section, we describe the findings from

this study that clarify the value of — and potential designs
for — tools for deautomation.
Desires to understand automation. The study participants
described a variety of situations where they wanted to know
more about their automation, especially if it was not working
as expected. For example, participant P7 recounted a time
when they needed to fix proofs, originally written by others,
due to a version change. Showing us one such proof, written
as series of tactics chained by semicolons, P7 said, “Just
figuring out where exactly it broke was really hard.” They
explained,

“Working with semicolons means if you ever have to
look at something you wrote that already has semi-
colons in it, you probably have to change it back, just
because it’s not helpful to jump from here [pointing to
the start of a sentence with semicolons] to here [point-
ing to the end]. There’s a lot going on in here, so I
would like to understand what it is.”
When using automation to operate on multiple goals at

once, participants wanted to understand how the behavior of
the automation differed on different goals. P5 described how,
if a script was applied to all goals, they sometimes needed
to know which goals it was failing to solve. P9, who showed
examples where they worked with several dozen goals at
once, said, “Typically, when I change my tactic, I have no idea
how the goals I solved changed compared to my previously
written tactic.”

P8 expressed dissatisfaction with existing support for op-
erating on multiple goals, remarking, “This is supposed to
be an interactive theorem prover.” However, they contin-
ued, semicolons and the “all:” selector break the interactive
process of “run a tactic, see the result, run another one.” Sev-
eral other participants also commented on difficulties with

not being able to see proof states at intermediate points of
automated proofs (P1, P4, P5, P7).

Participants also sought deeper insight when a tactic such
as auto surprisingly solved a goal, indicating that a premise
might have been false (P4), and when they needed to use
automated tactics from other libraries (P2).

Approaches to understanding automation. Many participants
described strategies for temporarily undoing automation, as
well as choices to avoid automation altogether in certain
situations.
In order to find and fix failures in automated proofs, par-

ticipants would sometimes undo parts of their automation,
e.g., by turning semicolons into periods (P3, P4, P5, P7, P9)
or inlining the body of a custom tactic (P1, P7, P8, P9). For
example, P9 simulated how they debug their custom tac-
tic by copying 20 lines of the tactic into the proof script,
where tacticals would then need to be further undone. Af-
ter repairing the tactic, they would fold the changes back
into the original automated style. Sometimes, this process
of undoing automation was “easy” (P3), but it could also be
“frustrating” (P7).

P1’s experiences led them to change their style of automa-
tion. Previously, they had written custom tactics to solve all
cases of their proof at once. But the difficulty of determining
which cases were failing later led them to transition away
from these tactics to finer-grained automation.
Other participants also described reasons to opt for less

automation. In order to make their proof developments ac-
cessible to undergraduate collaborators and to encourage
understanding of the “underlying structure” of the proofs,
P10 chose to write these proofs with “more primitive tactics.”
P11 was concerned that, if they automated some but not
all of their proof, they would reach a proof state with goals
where “it’s not clear what the relationship between them is.”
As a result, P11 said, “I struggle with the decision between
trying to get everything automated away versus trying to
maintain a structure I can understand looking back.” The
strategy of writing proofs more simply to support inspection
is not unique to our study participants: it also resembles
practices employed in engineering high-profile large-scale
proofs [7, Section 2.3, for example].

Our study surfaced consistent tensions between automa-
tion and interactivity, between automation and debugging,
and, more broadly, between automation and understanding.
Balancing these competing priorities imposes a significant
burden of writing and rewriting proofs. To relieve users of
this burden, we wish to transform deautomation from a te-
dious manual task to a smoother tool-assisted process.

3 Example
Consider this example of an automated proof, adapted from
the exercise solutions to Logical Foundations [22]. Suppose a
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user has proved an equivalence between twoways of evaluat-
ing expressions, one as an Inductive and the other a function.
Later, they realize only the forward direction of the equiv-
alence is relevant to them, so to simplify the development,
they decide to change the equivalence to an implication.
Refactoring the proofs is mostly straightforward — they just
need to delete the proofs for the backward direction — but
bizarrely, the forward direction now fails!
Theorem bevalR_beval :
∀ (b : bexp) (bv : bool),
bevalR b bv → beval b = bv.

Proof.
induction 1; simpl; intros;
try (rewrite aevalR_aeval in H, H0;

rewrite H; rewrite H0);
reflexivity.

If the user evaluates this script, the reflexivity tactic triggers
an error message saying that n1 =? n2 and aeval a1 =? aeval
a2 cannot be unified. What is wrong here?

Without Deautomation. We start by walking through a
potential set of steps for debugging this proof manually. Of
course, different users will have different debugging habits,
but we provide this sample walkthrough to demonstrate
some sources of tedium that can occur.
Since the error message reports that reflexivity is failing,

the proof writer starts by changing the last semicolon into a
period, so that they can see the place that fails. (We highlight
the edit made in each of the steps below.)
Proof.

induction 1; simpl; intros;
try (rewrite aevalR_aeval in H, H0;

rewrite H; rewrite H0).
reflexivity.

But now the reflexivity succeeds, so where did the error go?
The user steps back before the reflexivity, where they see
there are four goals. Upon closer examination, they realize
that the first goal can in fact be solved with reflexivity, as
can the second. So, to examine the failure, they opt to skip
the first two goals:
Proof.

induction 1; simpl; intros;
try (rewrite aevalR_aeval in H, H0;

rewrite H; rewrite H0).
3: {

reflexivity.

They can now see in full the proof state that reflexivity is
failing to execute on.
a1, a2 : aexp
n1, n2 : nat
H : aevalR a1 n1
H0 : aevalR a2 n2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
(aeval a1 =? aeval a2) = (n1 =? n2)

Certainly this does not seem solvable by reflexivity, but why
is the proof in this state? To investigate, the user can remove
an earlier semicolon, perhaps before the try.

Proof. induction 1; simpl; intros.
3: { try (rewrite aevalR_aeval in H, H0; rewrite
H; rewrite H0). reflexivity.

Stepping back and forth, they find the try does nothing, so
they know a tactic inside failed. To find the culprit, they start
by separating out the first rewrite:

Proof.
induction 1; simpl; intros.
3: {

rewrite aevalR_aeval in H, H0.

Aha! It fails. The user realizes that the rewrite worked pre-
viously, when aevalR_aeval was an if-and-only-if, but now
that it is a single implication, they need to use apply instead.
Observe that in order to understand why the proof was

failing, the user has to maneuver their way around the au-
tomation constructs — e.g., the semicolons and the try tacti-
cal — to figure out what was happening.

With Deautomation. Deautomation aims to protect the
user from the tedium of this manual maneuvering by return-
ing a version of the proof script free of automation. In this
case, deautomating the original proof script outputs:

Proof.
induction 1.

- simpl. intros. reflexivity. 𝑈

- simpl. intros. reflexivity.
- simpl. intros.

(* tried and failed to run: 𝑇

rewrite aevalR_eval in H, H0. *)

Fail reflexivity. admit. 𝐹

- simpl. intros.
(* tried and failed to run:

rewrite aevalR_eval in H, H0. *)
Fail reflexivity. admit.

The user can immediately jump to the intermediate point
in the third case where reflexivity is failing (F). They can also
see a trace (T) of the failed tactics within the try. They can
now use this information to find the bug described earlier.
Beyond assisting the user with pinpointing the location

and cause of failure, deautomation also supports their un-
derstanding of the proof overall. For example, if the user
wants to understand (U) why the first two cases succeed,
they can readily see and step through the proof snippets
there. Similarly, if the user wants to understand whether the
fourth case is failing for the same reason (in this case, it is),
they can also easily step there.

4 Design Considerations
We next describe some of the design considerations that arise
when deciding how to support deautomation. §4.1 and §4.2
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foreshadow some technical challenges regarding deautomat-
ing failing proofs and reasoning about the correctness of
deautomation, which we expand on in §5, while §4.3 men-
tions some interactive features needed in a tool implementa-
tion of deautomation.

4.1 Treatment of Failures
Users in our need-finding study indicated they especially
want to better understand their automation when faced with
a failing proof. Automated proofs are often “all or nothing”:
either they solve the goal completely, or (as in §3) they fail
completely. Deautomation, by contrast, needs some kind
of failure recovery — deautomating a failing proof should
provide an informative result.

Informative Failure Recovery. What do we mean by
“informative”? Our rule of thumb is that, via deautomation,
users should be able to access the information they want
about their automated proofs as readily and flexibly as they
could if they had written their proofs without automation.
This rule shapes what deautomation should look like up

to and beyond points of failure. Before a failure, any number
of tactics may have succeeded, providing important context
about what progress has been made in the proof. This con-
text should be preserved by deautomation, so that users can
step through the deautomated proof preceding a failure and
interact with the failing step. In the §3 example, this context
included the contents of the two successful cases, the initial
successful tactics in the failing case, the trace of the no-op
try, and the localized report that reflexivity failed.
We have several options for how to continue beyond a

point of failure (if at all). We stated above that users should
be able to work flexibly with deautomated proofs. When
users work with proofs where different branches — the cases
in a proof by induction, for example — are explicit, they can
choose, with the help of admits, what branches they want to
address, and in what order. For deautomation to provide the
same flexibility, it should support recovering from failures
on multiple branches. Again, the §3 example is consistent
with this aim, where the user could choose to examine either
of the failing branches, or both.
After a tactic fails on a branch, we do not necessarily

want to continue executing the tactics that follow in, say, a
semicolon sequence, as these might be intended for other
goals. To navigate these subtleties, we adopt the convention
that we do not continue beyond a failure on the branch that
failed, but we do continue with other branches.

Enriching the Space of Failures. One common situation
involving failure is when tactic execution fails on an interme-
diate step and this also causes the failure of the surrounding
tactic expression. As described previously, deautomation
should assist with such cases by recording the failure and
continuing onto other branches.

But not all tactic execution failures cause the surrounding
expression to fail. In particular, consider the tactical first,
where first [𝑡1 | . . . | 𝑡𝑛] tries each 𝑡𝑖 in the list until one suc-
ceeds. That is, first provides its own internal failure recovery!
When 𝑡1 fails, first recovers from this failure and continues
on to 𝑡2. The presence of both external failure recovery via
deautomation and internal failure recovery via first requires
careful thought about how these should interact.
Moreover, even if a top-level tactic script does not fail

outright, the user might still benefit from information about
internal failures. In §3, the try portion of the script does
not fail outright, but the internal failure of the rewrite is
extremely pertinent to debugging. To capture this, we chose
to have the deautomated output include a trace of what was
tried and failed, so that the user can have the relevant details
if this behavior was unintended.
Failure recovery affects the entirety of our design, from

the motivating examples that we have shown and will show,
to our conception of what it means for deautomation to have
worked correctly, and to, of course, the technical details of
our deautomation algorithm.

4.2 Notions of Correctness
Informally, deautomation is correct when the deautomated
script behaves the same as the original. How do we formalize
this notion?

We can define the semantics of a proof script as a function
from goals to results, where a result is either a list of goals or
a failure. But we would not expect deautomation to preserve
this semantics, because deautomation must be performed
relative to a specific goal, so the result of deautomating the
same automated script might look different on different goals.
For example, induction 1 ; 𝑡 would be deautomated differently
depending on how many goals are generated by induction.
Hence, our consideration of what it means for deautomation
to preserve semantics must also be relative to a specific goal.
Furthermore, while we do expect deautomation to be se-

mantics preserving for successful proof scripts, we should
not have this expectation for failing scripts. By supporting
failure recovery, deautomation purposefully alters the be-
havior of failing scripts to allow the user to step through the
output.

4.3 Levers for Control
Deautomation turns a compact script into a more verbose
one. Depending on the needs of the user, details in different
parts of this script may be more or less useful. We want our
deautomation tool to allow the user to exert some control
over exactly what is deautomated.

Returning to the script from §3, by default all of the tacti-
cals in the proof are selected for deautomation:

Proof.
induction 1 ; simpl ; intros ;
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try (rewrite aevalR_aeval in H, H0 ;
rewrite H ; rewrite H0) ;

reflexivity.

If the user, for example, has no desire to include individual
invocations of simpl and intros in the deatuomated script,
they may prefer to deselect the corresponding semicolons to
opt them out of deautomation:

induction 1 ; simpl ; intros ;

Then, the deautomated output begins instead with
Proof.

induction 1; simpl; intros.
- reflexivity.

An additional aspect that the user may want to control is
whether to deautomate the internals of user-defined tactics.
In particular, the user should be able to decide whether to
treat a user-defined tactic opaquely, as they would any built-
in tactic, or transparently, which exposes it for deautomation.

5 Technical Approach
With these design considerations in mind, we next introduce
a formal theory of deautomation.

5.1 Grammar
We start by defining the subset of Ltac that we support. The
grammar is stratified into atomic tactics, tactics, sentences,
and scripts.
Atomic tactics are opaque to deautomation. To reason

about how they behave, we assume a black-box run-atomic
function that determines the result of executing atomic tac-
tics. Its type is atomic→ goal→ (list goal + ⊥𝑛). That is,
executing an atomic tactic on a goal will either result in a
(possibly empty) list of goals or it will return⊥𝑛 , representing
a failure at what Coq calls failure level 𝑛.
Tactics 𝑡 are defined as follows:

𝑡 := 𝑎 | idtac
| 𝑡 ; 𝑡 | 𝑡 ; [𝑡 | . . . | 𝑡]
| first [𝑡 | . . . | 𝑡] | progress 𝑡
| 𝑇 | fix 𝑇 𝑡

The variable 𝑎 ranges over atomic tactics. The idtac tactic
does nothing. For semicolons, 𝑡1 ; 𝑡2 executes 𝑡2 on all goals
generated by 𝑡1, while 𝑡 ; [𝑡1 | . . . | 𝑡𝑛] executes 𝑡𝑖 on the 𝑖th
goal generated by 𝑡 . The tactical first behaves like the first
tactic from its argument list that succeeds; it fails if they all
fail. The progress tactical behaves like its tactic argument if it
succeeds and changes (progresses) the goal, or fails otherwise.
The fixpoint combinator fix 𝑇 𝑡 , with bound tactic variable
𝑇 , provides recursive tactics. We assume tactics are closed,
with variables appearing within corresponding fix binders.
Other useful tacticals can be derived [16] from these, e.g.:

try 𝑡 := first [𝑡 | idtac]

repeat 𝑡 := fix 𝑇 (try (progress 𝑡 ; 𝑇 ))

Beyond tactics, we also have sentences 𝑠 and scripts 𝑝:

𝑠 := all: 𝑡 | 𝑛: 𝑡

𝑝 := [ ] | 𝑠 :: 𝑝 | { 𝑝 } 𝑝
A sentence is a tactic plus an annotation, where all: 𝑡 means
𝑡 is executed on all goals, and 𝑛: 𝑡 means 𝑡 is executed on the
𝑛th goal. A bare sentence, without annotations, is syntactic
sugar for 0: 𝑡 . (Coq actually 1-indexes goals, but we 0-index
here to make some technical details cleaner.) Scripts can be
empty, begin with a sentence, or begin with a focus block, a
script between curly braces. Execution of this block proceeds
as if there is only the first goal, which must be solved before
the closing brace.

5.2 Deautomation Algorithm
We separate deautomation into two parts: treeification, which
captures the relevant information about the execution of the
script in an intermediate tree representation, and extraction,
which extracts the deautomated script from the tree.

We start by explaining how to deautomate simple ;-scripts
like this one:

Lemma andb_true_r (b : bool) : b && true = b.
Proof. destruct b; simpl; reflexivity.

Without the complications of non-semicolon tacticals or
failure recovery, the process is straightforward. §5.3 adds
these refinements.

Treeification. Trees are a useful intermediate representa-
tion during deautomation. For the moment, a tree 𝑟 is defined
as follows:

𝑟 := hole 𝑔 | node 𝑎 𝑔 𝑟★

A hole represents an unsolved goal 𝑔, and a node represents
the execution of an atomic tactic 𝑎 on a goal 𝑔, with children
𝑟★ recursively representing executions on the goals produced
by 𝑎 on 𝑔.

The function treeify takes two inputs, a tactic 𝑡 and a goal
𝑔, and proceeds by recursion on 𝑡 . For an atomic tactic 𝑎, we
define (in pseudocode):

treeify 𝑎 𝑔 = node 𝑎 𝑔 (map hole gs)
when 𝑔𝑠 := run-atomic 𝑎 𝑔

That is, we record the result of executing 𝑎 on 𝑔 as a node
whose children are holes representing the yet-unsolved goals
𝑔𝑠 . In the example andb_true_r above, treeifying the atomic
tactic “destruct b” on the initial goal would result in this tree:

hole (T&& T = T) hole (F&& T = F)

node (destruct b) (b&& T = b)

(To save space, we abbreviate true and false as T and F.)
For semicolons, we define:

treeify (𝑡1 ; 𝑡2) 𝑔 = let 𝑟 := treeify 𝑡1 𝑔
in applyTree (repeat (treeify 𝑡2) |𝑟 |) 𝑟
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We will explain this in just a moment; conceptually, though,
treeification parallels tactic execution.When executing 𝑡1 ; 𝑡2
on a goal 𝑔, we execute 𝑡1 on 𝑔, resulting in goals 𝑔𝑠 , then
execute 𝑡2 on each goal in 𝑔𝑠 . When treeifying, we first com-
pute treeify 𝑡1 𝑔, resulting in tree 𝑟 , then replace each hole 𝑔
in 𝑟 with the result of treeify 𝑡2 𝑔.

The function applyTree does this second step; its type is list
(goal→ tree)→ tree→ tree. It traverses its argument tree
from left to right, applying the first function from the given
list of functions to the first hole it encounters, the second
function to the second hole, and so on. In the pseudocode
above, repeat 𝑓 𝑛 indicates a list of 𝑓 repeated 𝑛 times, and
|𝑟 | is the number of goals in 𝑟 .
Continuing with the example, treeifying “destruct b ;

simpl” would thus result in this tree...

hole (T = T) hole (F = F)

node simpl (T&& T = T) node simpl (F&& T = F)

node (destruct b) (b&& T = b)

...and treeifying the entire script would result in this one:

node refl (T = T) node refl (F = F)

node simpl (T&& T = T) node simpl (F&& T = F)

node (destruct b) (b&& T = b)

Extraction. After constructing a tree from an automated
script, we extract a deautomated script by traversing it in
depth-first order, reading off the atomic tactics from each
node. For the example, the result is:

Proof.
destruct b.
simpl. reflexivity.
simpl. reflexivity.

We show pseudocode for this shortly.

5.3 Deautomation with Failure Recovery
We next extend the algorithm to support (1) deautomation
of non-semicolon tacticals and (2) failing proofs.

Basics of Recovery. We use failed in a tree to indicate
that error 𝑒 occurred at goal 𝑔, where 𝑒 records the atomic
tactic 𝑎 that failed.

𝑟 := . . . | failed 𝑒 𝑔 𝑒 := failureatom 𝑎

For example, suppose we made a mistake in the example
above and instead tried to prove this erroneous lemma:

Lemma andb_false_r (b : bool) : b && false = b.
Proof. destruct b; simpl; reflexivity.

Treeification should construct the following tree:

failed (failureatom refl) (F = T) node refl (F = F)

node simpl (T&& F = T) node simpl (F&& F = F)

node (destruct b) (b&& F = b)

We extend the definition of the function treeify on atomic
tactics with an additional case where run-atomic fails (disre-
garding the failure level 𝑛 for now).

treeify 𝑎 𝑔 = failed (failureatom 𝑎) 𝑔
when ⊥𝑛 := run-atomic 𝑎 𝑔

The semicolon case of treeify does not need to be modified,
since any failures are handled by the atomic case.
As explained in §4, we support recovering from failures

on multiple branches, but we do not continue past a failure
on any branch that failed. Concretely, we accomplish this by
extending the definition of applyTree to skip over functions
in its input list that correspond to goals labeled failed.
As before, the final step is to extract an automation-less

script. In the example, this is:

Proof.
destruct b.

simpl. Fail reflexivity. admit.
simpl. reflexivity.

The Fail command on a tactic 𝑡 succeeds if 𝑡 fails, allowing
the extracted script to communicate the failure that occurred
without actually failing.

The extract function on a tree outputs a list of atomic
tactics and a list of admitted goals. (Keeping track of admitted
goals helps state the properties in §5.4.)

extract (node 𝑎 𝑔 rs) = (a :: concat (map extract rs), [])
extract (hole 𝑔) = ( admit. , [𝑔] )

extract (failed (atomicfail 𝑎) 𝑔) = ( Fail 𝑎. admit. , [𝑔] )

Here :: is the “cons” operator on lists.

Recording the Initial Failure. We alluded in §4 to the
fact that the internal failure recovery of first interacts in
complex ways with the external failure recovery of deau-
tomation. In particular, first behaves differently depending
on how the tactics within it fail.
Ltac has multiple failure levels, written ⊥𝑛 . If executing

some tactic 𝑡 within a first tactical fails with ⊥0, then the
next tactic in the list provided to first is tried. If 𝑡 fails with
⊥𝑆 (𝑛) , then first itself fails, at level ⊥𝑛 . Hence, correctly
deautomating first requires us to correctly handle failure
levels throughout the deautomation algorithm.
To do so, we change the return type of treeify from tree

to a new type constructor 𝑅treeify, parameterized by a type 𝑥 :

𝑅treeify 𝑥 := yes 𝑥 | recov 𝑥 𝑛 | no 𝑛
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The new return type of treeify is 𝑅treeify tree. That is, there
are three cases for what can happen during tree construc-
tion. The yes case says everything succeeded and returns a
tree. The recov case says one or more failures occurred, but
we were able to recover from these failures, so we can still
return a tree; it also records the level 𝑛 of the initial failure
encountered. Finally, the no case says one or more failures
occurred and we could not recover from the last one; it again
records the level 𝑛 of the initial failure.
The two cases for atomic tactics 𝑎 — where execution

succeeds and where it fails — are rewritten to use the yes
and recov constructors of 𝑅treeify:

treeify 𝑎 𝑔 = yes (node 𝑎 𝑔 (map hole gs))
when 𝑔𝑠 := run-atomic 𝑎 𝑔

treeify 𝑎 𝑔 = recov (failed (failureatom 𝑎) 𝑔) 𝑛
when ⊥𝑛 := run-atomic 𝑎 𝑔

We explicitly record the failure level, and specifically the
level of the initial failure, in order to preserve the semantics
of first. Why? If we have a tactic 𝑡 where we encounter and
recover from multiple failures when constructing a tree 𝑟 ,
we cannot determine the initial failure in the original 𝑡 from
𝑟 alone. For example, consider the script

𝑡 := split ; [idtac | fail 0 ] ; [fail 1 | idtac]

The fail 𝑛 tactic is an atomic tactic that fails on any goal with
⊥𝑛 . On goal 𝑔 ∧ ℎ, we construct this tree:

failed (failureatom (fail 1)) 𝑔 failed (failureatom (fail 0)) ℎ

node split (𝑔 ∧ ℎ)

If 𝑡 appears as an argument to first, we will need to know
that it fails at ⊥0 instead of ⊥1, but this information is not
apparent from the tree, since construction continued past
the initial fail 0 in the second branch until it encountered the
fail 1 in the first branch. To resolve this issue, we remember
the initial failure level in the 𝑅treeify result type.
Next, to sequence computations involving 𝑅treeify, we de-

fine a monad instance, where

return 𝑥 := yes 𝑥

𝑚𝑥 >>= 𝑘 := match𝑚𝑥 with
| yes 𝑥 ⇒ 𝑘 𝑥

| recov 𝑥 𝑛 ⇒ match 𝑘 𝑥 with
| yes 𝑥 ′ ⇒ recov 𝑥 ′ 𝑛
| recov 𝑥 ′ _⇒ recov 𝑥 ′ 𝑛
| no _⇒ no 𝑛

| no 𝑛 ⇒ no 𝑛

Observe that, in the recov case, where a failure at level 𝑛
already occurred, that level is retained in the final result by
threading the initial level through the rest of the computation.
We write let 𝑥 ←𝑚𝑥 in 𝑘 𝑥 for𝑚𝑥 >>= 𝑘 .

Using this monad instance, treeifying semicolons now
looks like this:

treeify (𝑡1 ; 𝑡2) 𝑔 = let 𝑟 ← treeify 𝑡1 𝑔
in applyTree (repeat (treeify 𝑡2) |𝑟 |) 𝑟

The only difference from the previous version is that the :=
in the let-binding has become a monadic bind. Analogous
modifications are needed in applyTree.

For first, we use an auxiliary function treeifyfirst to iterate
through the list of tactics.

treeifyfirst : list tactic→ goal→ list (𝑅treeify tree)

treeifyfirst [ ] 𝑔 := [ ]

treeifyfirst (𝑡 :: 𝑡𝑠) 𝑔 := match treeify 𝑡 𝑔 with
| yes 𝑟 ⇒ [ yes 𝑟 ]
| recov 𝑟 0⇒ recov 𝑟 0 :: treeifyfirst 𝑡𝑠 𝑔
| recov 𝑟 𝑆 (𝑛) ⇒ [ recov 𝑟 𝑛 ]

The output of this function is a list of the results of treeifying
each tactic in the input. We use the recorded failure level to
determine whether or not to continue onto the next tactic or
to terminate. The key step is the last one: consistent with first,
when we encounter failure ⊥𝑆 (𝑛) , we do not continue onto
the next tactic and instead return that the first as a whole
has failed at ⊥𝑛 . (The no cases are analogous to recov.)

In the main treeify function, we need to collapse the list re-
turned from treeifyfirst back into a single result, which turns
out to be a little tricky. The most straightforward approach
would be to take the last element of the list

treeify (first 𝑡𝑠) 𝑔 := match treeifyfirst 𝑡𝑠 𝑔 with
| 𝑚𝑟𝑠 · [𝑚𝑟 ] ⇒𝑚𝑟

(where · is list-append). But this is unsatisfying because it
throws away the information in𝑚𝑟𝑠 . If the tactic 𝑡 in, for
example, first [𝑡 | idtac] fails, we might want to know why
it failed. To retain this information, we add a new construct
to trees:

𝑟 := . . . | trace (list 𝑟 ) 𝑟

All of the trees in a trace should have the same goal 𝑔 at their
root. Then, if we have function getTrees : list (𝑅treeify tree)
→ list tree, we can replace the case above with

| 𝑚𝑟𝑠 · [𝑚𝑟 ] ⇒ let 𝑟 ←𝑚𝑟 , 𝑟𝑠 := getTrees𝑚𝑟𝑠

in return (trace 𝑟𝑠 𝑟 )

One subtlety remains: what if first is applied to an empty
list of tactics? The semantics dictates that first [ ] should fail.
We discuss how to handle this class of failure next.

Incorporating Tactic-Level Failures. Up until now, our
definition of errors 𝑒 only included atomic failure, which
represents an atomic tactic 𝑎 failing on some goal. But not
all failures can be localized to an atomic failure. For example,
first [ ] fails, but there are no atomic tactics at all in this term.
Tactic failures can also occur in 𝑡 ; [𝑡1 | . . . | 𝑡𝑛], when 𝑛 does
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not match the number of goals generated by 𝑡 , and progress
𝑡 , when 𝑡 succeeds but does not change the goal.

We therefore add a second kind of failure, tactic failure,
to our definition of 𝑒 , with constructor failuretac 𝑡 . Then, for
first [ ], we construct the tree failed (failuretac (first [ ])) g.
One other tactic-level “failure” needs to be considered.

Our language supports, through fixpoints, the possibility of
non-terminating tactic execution. To ensure treeification ter-
minates, we supply fuel to the algorithm, which decrements
with each iteration. If fuel reaches zero, we output the tree
failed out-of-fuel g. Incorporating this information into the
tree allows us to retain the trace of tactics up until that point
instead of failing globally.

Lifting to Sentences and Scripts. While it makes sense
to talk about tactics being executed on a single goal, inter-
mediate sentences and script chunks are often executed on
multiple goals. For treeification, we cannot directly pass in,
say, a list of goals, because the tree structure requires that
we maintain context about where goals originate and the
relationships between them. Instead, treeify on sentences
takes a sentence and a tree as inputs, and likewise for scripts.
Their output is still a tree.

We treeify sentences by combining two previous defini-
tions: treeify for treeifying tactics and applyTree for applying
a list of functions on the unsolved goals in a tree. For sen-
tences starting with all:, this gives:

treeify (all: 𝑡 ) 𝑟 = applyTree (repeat (treeify 𝑡 ) |𝑟 |) 𝑟

That is, we replace each unsolved goal in 𝑟 with the treeifi-
cation of 𝑡 for that goal. Atomic- and tactic-level failure
recovery now smoothly transfers to sentences: if 𝑡 fails on
a goal in 𝑟 , the failure is recorded on that branch, but other
branches proceed as usual.

For sentences starting with 𝑛:, we need to account for the
case where the selector 𝑛 is out of bounds. To ponder how
we might handle this failure, observe that each point in a
tree (a hole, node, failed, or trace) corresponds to exactly
one goal. It would not make sense to try to encode an out-
of-bounds error, which is inherently with respect to a list of
goals, within the tree. Accordingly, we do not recover from
sentence- and script-level failures. This decision aligns with
our focus on failure recovery in the context of automation and
the fact that we focus on automation at the level of tactics.
So, we have

treeify (𝑛: 𝑡 ) 𝑟 = if 𝑛 > |𝑟 |
then no 0
else applyTree ([id, . . . , treeify 𝑡 , . . . , id]) 𝑟

where we pass to applyTree a containing treeify 𝑡 at the
𝑛th position and identity functions elsewhere. In the out-of-
bounds case, we use the no constructor from 𝑅treeify.

5.4 Correctness
With all the pieces in place, we can now check that deau-
tomation obeys some desirable correctness properties.

Baseline Model of Ltac Semantics. We will want to
be able to establish some notion that a deautomated script
behaves like the original. In order to conduct such reasoning,
we need to have a formal model of how Ltac scripts behave.

For atomic tactics, we rely on the black-box run-atomic
function. For other tactics, we use the semantics from [16]
(specifically the “Ltac — The Tactics” chapter). We extend
the semantics in [16] to sentences and scripts.
At a high level, execution of a tactic 𝑡 on a goal 𝑔 results

in either a list of goals 𝑔𝑠 , which is empty if 𝑡 solved 𝑔, or
a failure state ⊥𝑛 . Execution of sentences and scripts are
analogous, but relative to a starting list of goals.

Our model of Ltac semantics is a simplified approximation
of the actual Ltac semantics. In particular, we do not model
unification: goals are opaquely represented, and there is no
provision for tactic execution on one goal to affect another
goal. The effect on deautomation is that we cannot in general
deautomate scripts that, due to existential variable instan-
tiation, rely on goals being solved out of the order they are
generated.
Another limitation is that we do not model backtracking.

Some atomic tactics support backtracking; for example, the
“constructor” tactic in a script such as “constructor ; 𝑡” may
attempt multiple different constructors if 𝑡 fails. We cannot
deautomate proof scripts that rely on backtracking.
These limitations are obvious directions for future work,

as we discuss in §9. For now, however, our priority is not to
model the full complexity of Ltac, but rather to carve out a
subset that allows us to explore interesting questions about
deautomation. This includes both how to design informative
failure recovery, as we saw above, and how to formalize the
properties deautomation should obey, as we shall see next.

Preservation of Meaning. We begin with properties of
treeification and extraction, then glue these results together
into a theorem about the overall behavior of deautomation:
deautomating a non-failing proof on a goal 𝑔 will result in a
proof that behaves the same as the original proof on 𝑔. For
failing proofs, failure recovery intentionally results in an
output that behaves differently from the original; however,
we can still prove some weaker properties.

It will be useful to distinguish between the root goal and
the leaf goals of a tree, defined as follows:

rootGoal (hole 𝑔) = 𝑔 leafGoals (hole 𝑔) = [𝑔]
rootGoal (node _ 𝑔 _) = 𝑔 leafGoals (node _ _ rs) =

concat (map leafGoals rs)

(The statements that follow are formulated at the level
of tactics. Sentences and scripts are discussed at the end.
All the proofs have been mechanized in Coq; however we
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were not looking to create a fully verified implementation:
the mechanization is not connected to the proof-of-concept
implementation described in §6.)

We start by showing the result of treeification is consistent
with the semantics of the original tactic.

Lemma 1. If execution of tactic 𝑡 on goal 𝑔 results in goals
𝑔𝑠 , then treeification of 𝑡 for 𝑔 results in yes 𝑟 , where the leaf
goals of 𝑟 are 𝑔𝑠 . If execution of 𝑡 on 𝑔 results in failure ⊥𝑛 ,
then treeification of 𝑡 for 𝑔 results in recov 𝑟 𝑛 or no 𝑛.

Next, treeification produces only valid trees, satisfying
two conditions. First, for any node 𝑎 𝑔 𝑟𝑠 in the tree, the result
of run-atomic 𝑎 𝑔 must equal the root goals of 𝑟𝑠 . Second,
for any failed 𝑒 𝑔 in the tree, the error described by 𝑒 must
occur at 𝑔. That is, if 𝑒 is failureatom 𝑎, then run-atomic 𝑎 𝑔
should fail, and if 𝑒 is failuretac 𝑡 , then execution of 𝑡 on 𝑔

should fail. We do not validate out-of-fuel errors.

Lemma 2. If treeification of 𝑡 for 𝑔 results in yes 𝑟 or recov
𝑟 𝑛, then 𝑟 is valid.

For extraction, we might expect that, if we extract script 𝑝
from a tree 𝑟 , then execution of 𝑝 on the root goal of 𝑟 results
in the leaf goals of 𝑟 . This is almost true, but not quite: since
we use admits in the extracted script, we need to instead rely
on the record of admitted goals.

Lemma 3. Given a valid tree 𝑟 , if extracting 𝑟 results in a
script 𝑝 and admitted goals𝑔𝑠 , then execution of 𝑝 on the root
goal of 𝑟 results in the empty list of goals, and the admitted
goals 𝑔𝑠 are equal to the leaf goals of 𝑟 .

(We could avoid the issue of admitted goals by, for exam-
ple, offsetting tactics appearing after an unsolved goal, so
“split. admit. reflexivity.” would become “split. 2: reflexivity.”
However, since admit is already commonly used by users to
mark unsolved goals, we chose to use it here too.)
We compose all these lemmas into a top-level theorem

about deautomation of successful tactics:

Theorem. If execution of 𝑡 on 𝑔 results in goals 𝑔𝑠 , then
A. treeification of 𝑡 for 𝑔 results in yes 𝑟 , and
B. if extraction on 𝑟 results in a script 𝑝′ and admitted

goals𝑔𝑠′, then execution of 𝑝′ on𝑔 results in the empty
list of goals, and 𝑔𝑠 = 𝑔𝑠′.

Proof. By Lemma 1, treeification does result in yes 𝑟 , and the
leaf goals of 𝑟 are 𝑔𝑠 . By Lemma 2, 𝑟 is valid, so by Lemma
3, given extracted script 𝑝′ and admitted goals 𝑔𝑠′, we know
𝑝′ executes to [ ] and the leaf goals of 𝑟 are 𝑔𝑠′. Transitively,
𝑔𝑠 = 𝑔𝑠′. □

When tactic execution fails, if we recover and deautomate
into some script 𝑝 , then we can show this script executes
without failing (though with some admits), allowing the user
to step through the script to understand what went wrong.

To lift these lemmas and the final theorem to scripts, re-
call that treeification on scripts takes a tree as input. But
extraction makes no distinction between tactics already in
the tree prior to treeification and tactics added afterwards.
So we need to specialize the final theorem to a singleton list
of goals [𝑔]. In practice, this means we cannot start deau-
tomation “mid-proof.” The levers from §4.3 give users more
control over what to deautomate.

6 Proof-of-Concept Implementation
Wehave implemented the theory above as a proof-of-concept
VS Code extension that provides a concrete demonstration
of our theoretical contributions and illustrates how deau-
tomation might fit into an interactive programmer workflow.

With this extension, the user’s proof is loaded into a side
panel, and they see the “levers of control” described in §4.3.
In particular, they can deselect tacticals to exclude them from
deautomation. They can also opt to treat certain user-defined
tactics as transparent, which inlines the body of that tactic
during deautomation. (This feature is still quite preliminary:
we only support user-defined tactics that are abbreviations —
i.e., that do not have arguments — and that fall within our
subset of Ltac.) After the user adjusts what they want to
deautomate, the extension deuatomates the proof. A video
figure demonstrating this interaction on examples appears
in the supplemental material.

How itWorks. The implemented deautomation algorithm
closely follows the structure of the algorithm from §5. It rests
on a few lower-level components.

Parsing. The extension parses the proof script into atomic
tactics and tacticals. The current prototype implements a
custom parser for a subset of Coq scripts; a future implemen-
tation should rely on Coq’s own parser to ensure feature
parity.

Proof tree construction. The deautomation algorithm relies
on a black-box run-atomic function. We implement this by
running coqtop and asking it to execute each atomic tactic
on the appropriate goal. This has been sufficient for pro-
totyping purposes, although integrating with the Coq API
would likely be more robust.

We also support deautomation of auto by replacing it
with the output of info_auto, and likewise with eauto and
info_eauto.1 Just as with the tacticals, the user can choose
to deselect auto and eauto to opt them out of deautomation.
Traces. When rendering the deautomated script, we ex-

tract the traces recorded in the tree from first (and try) as
comments on failing branches, to help the user debug.

1Readers familiar with the similarly named Info command, which prints
the tactics that were executed by some more complex tactic expression,
might wonder how its functionality compares with deautomation. While
Info aligns with deautomation in limited situations, it does not unpack
semicolons, and it does not output information when execution fails.
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Pretty printing. Our pretty-printer also adds bullets to de-
lineate the branches of the deautomated script. The resulting
extraction produces the examples in §3 and §7.

7 Extended Example
We conclude with another example of deautomation that
illustrates some of the features discussed in §5. This example
is adapted from Verified Functional Algorithms [2], a textbook
in the Software Foundations series.

Suppose a user is learning about binary-search tree proofs,
and they encounter in their textbook this theorem:

Theorem lookup_insert_eq :
∀ (V : Type) (t : tree V)

(d : V) (k : key) (v : V),
lookup d k (insert k v t) = v.

Proof. induction t; intros; bdall.

The bdall tactic is defined in the textbook to be

Ltac bdall :=
repeat (simpl; bdestructm; try lia; auto).

Recall that we derive try from first and repeat from a com-
bination of fix, progress, and try, so collectively, this proof
script exercises most of our deautomation algorithm.
Given that they did not write this proof themselves, the

user is not particularly confident about why it works, so
they would like to be able to step through and examine the
details. Turning to deautomation, they choose to make bdall
transparent, so that they can deautomate its contents. They
click “deautomate,” and voilà!

induction t.
- intros. simpl. bdestructm.
+ lia.
+ idtac. simpl. bdestructm.

* lia.
* simple apply @eq_refl.

- intros. simpl. bdestructm.
+ idtac. simpl. bdestructm.
* simple apply IHt1.
* lia.

+ idtac. simpl. bdestructm.
* idtac. simpl. bdestructm.

- - lia.
- - idtac. simpl. bdestructm.

++ simple apply IHt2.
++ lia.

* idtac. simpl. bdestructm.
- - lia.
- - idtac. simpl. bdestructm.

++ lia.
++ simple apply @eq_refl.

The deautomated script immediately reveals much more
information about the underlying structure of the proof. For
example, it is apparent that the repeat in bdall is being put
to good use, as the tactics within are invoked many times.

Beyond static information, the user can now step to inter-
mediate goals they wish to inspect. For example, they may
wonder what goals lia is solving. In the deautomated script,
they can see precisely the places where lia succeeds; jumping
to those locations, they see that these are cases where there
are contradictory assumptions (e.g., 𝑘0 < 𝑘 and 𝑘 ≥ 𝑘0).
Note also that, while the custom tactic bdestructm has

automation we do not support, namelymatch goal, this does
not prevent deautomating the surrounding proof by simply
continuing to treat it as opaque.
This example shows the complementary strengths of au-

tomated and deautomated proof scripts: automated scripts
are succinct and powerful; deautomated scripts are flexible
and informative.

8 Related Work
Our goal in this paper has been to expand a proof script so
as to provide more points in its execution where its behavior
can be inspected. Prior work has addressed related goals.
Our closest predecessors are Pons’s Ph.D. thesis [24] and
Adams’s Tactician tool [1].

Pons presents (in Section 4.3 of [24]) an algorithm for tactic
expansion. Tactic expansion transforms Coq proof scripts
containing semicolon 𝑡 ; 𝑡 and branching 𝑡 ; [𝑡 | . . . | 𝑡] tacticals
into individual steps. For example (in Appendix D of [24])

A; B; [C | D | E | F]; G.

would, in the appropriate context, be expanded into

1: A. 1: B. 3: B. 1: C. 1: G. 1. D. 1: E. 1: F. 1. G.

Pons generates graphical visualizations of proof trees (e.g.
on p. 63 of [24]). He also shows how to modify the expansion
algorithm to support failure localization by moving failing
tactics to the end of the script.
There are many notable similarities between Pons’s no-

tion of expansion and the deautomation explored here. Both
achieve the effect of allowing the user to step through the
individual tactics in their proof, and both consider the issue
of handling failing proofs. Our work goes beyond Pons’s
in (1) supporting deautomation of several tacticals besides
semicolon and branching — for example, as we have seen,
tacticals such as first require especially careful consideration
in the context of failure recovery — and (2) offering a more
rigorous treatment of the deautomation procedure and its
formal properties.
The Tactician tool [1] supports unraveling of HOL Light

tactical connectives into a step-by-step proof. We share the
broad approach of modeling a proof as a tree and construct-
ing that tree by recording the behavior of tactics as they are
applied. The main difference is that Tactician does not appear
to support failure localization or recovery. Also, Tactician
only discusses how to address HOL Light’s equivalent of
semicolon and branching tacticals. Conversely, Tactician’s
implementation is more robust than our current prototype.
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Our work is also related to techniques that improve the
visibility of intermediate proof states. Our approach is to
transform the proof script in a way that introduces execu-
tion points, but there are other ways to improve visibility.
In particular, others have developed visual debuggers for
tactics [13] and new tactic languages that afford inspection
of the flow of subgoals [10, 15]. We see deautomation as a
useful way to work with existing tactic languages, and as
providing a kind of ready-made trace of what a proof does
during a debugging session.

Even when users are shown the state of a proof, they still
may need help understanding it. Robert’s PeaCoq tool [26,
Chapter 3] augments displays of proof obligations to high-
light how those obligations have changed after the applica-
tion of a tactic, particularly highlighting which obligations
have been addressed and which have been introduced. Fur-
thermore, as some in the interactive theorem proving com-
munity have pointed out [9, 23], formal proofs can sometimes
helpfully be augmented with diagrammatic notations, as in
visualizations of heaps and hydra diagrams. One comple-
ment to proof deautomation might be toolkits for creating
domain-specific visual descriptions of state, such as those al-
ready developed for the Lean proof assistant [21]. The CtCoq
system [5] supports state visualization and "pseudo natural
language" explanation of proofs.

Deautomation aims to enable more efficient manipulation
of a proof. The kinds of graphical editing [15] and drag
and drop [12] interfaces proposed in the interactive theorem
proving literature could have a place in helping users reorder
and restructure tactics in deautomated proofs. We anticipate
that interfaces from the broader interactive programming
tools literature for exposing program state in-situ [18] and
for debugging streams [28] could accelerate inspection of
subgoals around sites of automation.

Deautomationmight be less necessary if proofs were made
more robust to breaking changes that necessitate inspection.
For instance, they could be updated with automatically gen-
erated patches as their specifications change [25]. We see
deautomation as a complement to automated fixes, in the sit-
uations where a user by preference or circumstance cannot
rely on automation to fix itself.

9 Future Work
9.1 Expanding the Scope of Deautomation
In this paper, we chose to support a subset of Ltac, focusing
on a range of tacticals, and to employ a simplified model of
Ltac semantics that treats atomic tactics and goals as opaque.
This tightly defined scope serves as a rich starting point for
establishing a core of what effective deautomation looks like,
but it certainly should not be the endpoint. We discuss in
this section how we might expand the scope in the future.

Backtracking. The tactical first, which we do deauto-
mate, can be thought of as providing a limited, local form

of backtracking, where failures can cause additional tactics
to be tried. As future work, we would want to incorporate
explicit backtracking tacticals like +. Consider this example:

Inductive example_ind : Prop :=
| bad : False → example_ind
| good : True → example_ind.

Goal example_ind.
Proof. (apply bad + apply good); easy.

The + tactical allows cross-semicolon backtracking. In the
script above, bad is applied, which leads to a goal where easy
fails. This failure triggers backtracking, so that now good is
applied, leading to a goal where easy succeeds.

This script behaves the same as
first [apply bad; easy | apply good; easy].

which we could deautomate into:
(* tried and failed to run: apply bad. easy. *)
apply good. easy.

Although backtracking tacticals would add a new layer of
complexity to our deautomation theory, we have already
built useful foundations around how to deautomate first.

Backtracking is also an effect that can be implemented in-
ternally in a tactic such as constructor. For example, suppose
we have the same goal as above but with this proof:

Proof. constructor; easy.

The same general sequence of steps as above occurs, but
now the backtracking is internal to constructor. Our current
algorithmwould erroneously output a script that behaves dif-
ferently from the original. In fact, we cannot deautomate this
proof — that is, we cannot get rid of the semicolon — without
also unraveling the internal tactics tried by constructor.
But in our conception of deautomation, we do not peer

inside of atomic, built-in tactics, so we may not actually want
to deautomate such a proof. One approach to handling such
situations is to dynamically detect when the deautomated
script has in fact diverged in behavior from the original and
inform the user. This detection should not preclude us from
deautomating scripts with tactics like constructor in general,
only those that rely on invisible backtracking.

Unification. Our model of Ltac semantics does not con-
sider unification. However, we can still deautomate many
proofs containing e* tactics that create existential variables.
For example, we have no problem deautomating this proof

Goal ∃ x, x ≤ 0 ∧ x ≤ 1.
Proof.

(* can be deautomated *)
eexists. split; eauto.

(* into *)
eexists. split.

simple apply le_n.
simple apply le_S. simple apply le_n.
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However, we have made the simplifying assumption that
we can output the steps of the deautomated script in “linear”
order, so that tactics are applied on goals in the order the
goals are generated. This causes us to incorrectly deautomate
proofs such as this one, where the inequalities are swapped.
Goal ∃ x, x ≤ 1 ∧ x ≤ 0.
Proof.

(* cannot be deautomated *)
eexists. split; [ | eauto ]; eauto.

In this second proof, the ; [ | eauto] not only solves the
goal for the second inequality x ≤ 0, but it also correctly
instantiates the existential variable corresponding to x to be
0. In our current algorithm, the deautomated output would
instead solve the goal for the first inequality x ≤ 1 before
the second, which incorrectly instantiates x to be 1, causing
the second inequality to be unsolvable.

An alternative approach to deautomation might preserve
the order of the automated script:
1: eexists. 1: split. 2: eauto. 1: eauto.

In fact this output resembles that of Pons [24]. While this
approach would assist the particular issue of out-of-order
existential variable unification, it may negatively impact the
readability of deautomated outputs in general. For example,
if we tried to reformat the andb_true_r example this way,
we might get:

1: destruct b.
1: simpl. 2: simpl.
1: reflexivity. 1: reflexivity.

Even in this small example, it is more challenging to see the
structure of the deautomated proof — in particular, what the
“branches” of the proof are and what tactics are applied to
which branch. This is further complicated by the fact that
the 𝑛: selectors are re-indexed as goals get solved.
We would be interested to examine in future work how

to balance these challenges of deautomated scripts being
maximally useful versus handling out-of-order unification.

More of Ltac. In this paper, we support just a subset
of Ltac, focusing on tacticals. One important feature to be
added ismatch goal (and variants). We could considermatch
goal in two parts: the pattern-matching machinery, which
determines what branches match, and the failure-recovery
machinery, which tries a new branch if one fails. The pattern
matching part will be new, but the failure recovery part ties
in closely with what we know about deautomating first.

We also described our preliminary support for deautomat-
ing a very limited class of user-defined tactics. In the future,
we would want to additionally support tactics that take ar-
guments, recursive tactics, and tactics with more advanced
functionality, such as generating fresh names.

Ltac2. We worked with Ltac because it is still in wide-
spread use, but we are interested in exploring Ltac2 in future

work. In fact, the backtracking primitives zero, plus, and
case seem like a compelling starting point for determining
how deautomation might compositionally support proofs
that rely on backtracking. Besides backtracking, since many
of the tactics and tacticals of Ltac were carried over to Ltac2,
the portability of our deautomation should also benefit from
the strong similarities between the languages.

9.2 Reautomation
The inverse of deautomation is reautomation — that is, the
process of rolling automation back up after the user has in-
spected and modified it. Notably, this is distinct from general
utilities for automating proofs (e.g., [1, 24]), as a user of reau-
tomation may wish that the reautomated proof preserves
the design of their original automated script.

Why might this be difficult? For one reason, it may be diffi-
cult to infer precisely what a user wants out of reautomation
after they have edited a deautomated script. Consider the
example from §3 once more. Suppose the user reviews the
deautomated script, finds the bug, and fixes it on the third
branch, but not the fourth.
What is the right outcome of reautomation in this case?

One option is to assume that the user intends to change the
fourth branch in the same way. This would lead to a reauto-
mated proof that retains the same structure and makes the
modification on all failing branches. Another option is to in-
terpret the user’s edits literally, where the reautomated proof
now behaves differently in the third and fourth branches,
perhaps by using the ; [ | | ] construct. Reautomation would
have to be designed in a way that correctly anticipates when
a change is meant to be folded into additional branches.

Another challenge is mapping changes in a deautomated
script to its automated form. To achieve this mapping, it is
likely necessary to maintain a record linking expressions in
the original script to the deautomated script. Edits to one
script need to be mapped to the other. To do so in a coherent,
composable way, it may require bidirectional programming
approaches such as lenses [14].

10 Conclusion
As our need-finding study shows, there is a tension between
automation and interactivity: automation comes at the ex-
pense of easy access to a proof’s intermediate state. But with
appropriate tooling, automation and interactivity can coexist
harmoniously, enabling users to examine mechanized proofs
at a level of detail that suits their needs. This work on deau-
tomation describes one model of such tooling, fit to a core
set of tacticals from Coq and robust to failures.
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