
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

QED in Context
An Observation Study of Proof Assistant Users

ANONYMOUS AUTHOR(S)

Interactive theorem provers, or proof assistants, are important tools across many areas of computer science

and mathematics, but even experts find them challenging to use effectively. To improve their design, we need

a deeper, user-centric, understanding of proof assistant usage.

We present the results of an observation study of proof assistant users. We use contextual inquiry method-

ology, observing 30 participants doing their everyday work in Coq and Lean. We qualitatively analyze their

experiences to surface four observations: that proof writers iterate on their proofs by reacting to and incorpo-

rating feedback from the proof assistant; that proof progress often involves challenging conversations with the

proof assistant; that proofs are constructed in consultation with a wide array of external resources; and that

proof writers are guided by design considerations that go beyond simply “getting to QED.” Our documentation

and analysis of these four themes clarifies what proof work really looks like with current tools as well as

potential design opportunities that tool builders and researchers should consider when working to improve

the usability of proof assistants.

Additional Key Words and Phrases: Proof Assistants, Contextual Inquiry, Human Factors

1 Introduction
Mechanized proofs are increasingly important in many branches of computer science and mathe-

matics. For example, a 2020 report showed that POPL saw about a quarter of published papers in

recent years accompanied by mechanized proofs [25]. But mechanized proofs remain quite hard to

produce, requiring both substantial expertise and effort.

One way to make proofs easier to write is to improve the experience of using the proof assistants,
or interactive theorem provers, in which many of them are built. Indeed, tool builders have devised

many techniques to improve proof assistants, including better automation [14, 27, 34]; more direct

means for constructing complex proofs, like graphical editing [23, 48]; more intelligible views

of proof states [12, 32]; automatic suggestions for tactics [45, 49], premises [37, 45], and whole

proofs [1, 16]; and utilities for proof repair [20, 40] and reuse [43].

In moments of accelerated technological development, such as the present one for proof assistants,

it is important to ensure that researchers are on the same page. Advances need to be calibrated to

user needs and aligned with realistic user workflows; without these checks, we risk wasted effort

and missed opportunities. Happily, established research methods from human-computer interaction

(HCI) can provide just the insights we need [11]. Prior OOPSLA studies have shed light on user

needs in functional programming [29] and code-generation tools [7], providing valuable insight to

shape research. User-centered research can also generate new research ideas: in property-based

testing, recent user studies [17, 18] have led to new tools [19, 33] that address real developer needs.

The same kinds of insights can guide research and development around proof assistants.

We present a study of proof assistant use that paints a rich picture of the realities of proof

mechanization, with a focus on cataloging and interpreting the easy-to-miss, moment-to-moment

interactions of real-world proof work. We observed 30 users of Coq [47] and Lean [30] for one hour,

each doing their own work, and spoke with them in real time about the strategies they deployed

and the obstacles they encountered (§3). We offer the following contributions:

• Wemake four observations about proof assistant usage — specifically, proof writing involves:

– continual iteration through reaction to and incorporation of feedback (§5),

2024. ACM 2475-1421/2024/1-ART1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

– challenges when conversing with the proof assistant about minutiae (§6),

– consultation of an array of resources beyond the current proof (§7), and

– consideration of design aspects beyond simply “getting to QED” (§8).

We describe these phenomena using examples from our observation sessions, concretizing

what might otherwise remain “folklore” knowledge and enriching it with descriptions of

real situations proof writers encountered in their work. From these examples, proof assistant

researchers can reconstruct scenarios of usage situations and replay user rationales.

• To further support future research, we identify five opportunities to capitalize on our

observations and advance proof assistant usability, including ideas for how future versions

of proof assistants can support exploratory proving, help proof writers manage details, and

align better with users’ values (§9).

2 Terminology
We assume in this paper familiarity with the basic functionality of proof assistants, but do not

assume deep knowledge of a particular proof assistant — the reader should know what tactics and

proofs states are, for instance, but they need not know the behavior of specific tactics in Coq or

Lean. This section briefly reviews how we use common terms such as these.

A proof assistant is a programming environment that helps users write mechanized (i.e., machine-

checked) proofs. Proof assistant users could write proof terms by hand, but more commonly, they

might instead construct proof terms by applying a series of tactics. Consider this example in Coq:

Lemma add_0_l : forall (n : nat), 0 + n = n.
Proof. intros. simpl. reflexivity. Qed.

The code between the Proof and Qed is a proof script, and the intros, simpl, and reflexivity within

are tactics. A user would likely write this proof script incrementally; at each step marked with a

period, they can evaluate the proof to this point and see what goal they should prove next. The

goal is visually presented to the user as a proof state.
Zooming out beyond individual proof scripts, a proof development consists roughly of definitions,

lemmas, and their proofs. Definitions describe the structures under discussion. Lemmas are the facts

being proven about these structures. (Some lemmas are labeled theorems, propositions, corollaries,

etc.; we use the term “lemma” generically for all of these.) We call the union of the definitions and

the lemma statements the specification of a development.

We use the phrase proof writers to refer to users writing mechanized proofs in proof assistants.

We sometimes juxtapose mechanized proofs with paper proofs — informal proofs written in natural

language, whether literally on paper or in a text editor.

3 Methodology
In order to understand the realities of everyday proof work, we designed our study to bring us

close to that work. We followed the methodology of contextual inquiry [24] from human-computer

interaction, which focuses on observing real users doing their own work and speaking with them

in real time to understand what they are doing. This methodology complements prior work on

proof assistant usability — such as focus groups [8], experience reports [10], predefined tasks [2, 3],

and log analyses [41, 46] — by offering a detailed real-time picture of the process of proof writing.

3.1 Setting
Scope. We carefully chose the scope of this study — the proof assistants, the specific users, and

the kinds of proof work that we chose to observe — to achieve our goals of understanding the usage

and usability of proof assistants as they are leveraged to support actual work.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

QED in Context 1:3

We chose to study two of the most widely used proof assistants: Coq
1
and Lean. These proof

assistants share the fundamental interaction model described in §2, but the contexts where they

are typically used differ: Coq, first released in 1989, has a strong user base centered in the program-

ming languages community; Lean, released in 2013, has a rapidly growing user base centered in

the mathematics community. This choice of proof assistants allowed us to ground the study in

observations common to both tools, while also observing some experiential aspects unique to each.

We decided to recruit only proof assistant users who were presently engaged in an open-ended

project, excluding, for example, students using proof assistants for homework assignments. This

ensured that we observed realistic proof work. Our participants still had varying levels of experience.

While participants worked on tasks of their choice, we often encouraged participants to choose a

task where they would be engaging primarily with proof scripts. That is, our observation sessions

(and thus the results we present here) focused primarily on proof-centric work, where users are

writing or modifying proof scripts, as opposed to specification- or infrastructure-centric work,

where they might instead be primarily setting up definitions, notations, etc.

The process of building a proof development can take months or even years. Within the mere

hour we had to observe each participant, we wanted to see the aspects of their work that are

most specialized to the setting of a proof assistant — where they actively interact with the proof

assistant to gradually produce proof scripts. Having said this, what we observed was proof-centric
but far from proof-exclusive. For example, we saw many instances of participants revisiting their

specifications in the middle of a proof (see §5.1).

Participants. We conducted study sessions with 30 participants, 15 using Coq and 15 using Lean.

We recruited via Zulip forums, personal contacts, and mailing lists. After each session, we asked

participants to report some details about their background. The level of experience and occupation

of each participant is summarized in Appendix A. Coq participants tended to be more experienced

(median four years) than Lean users (median two years) overall, which is expected given that Lean

is newer. Twenty-six of the participants identified as male, three female, and one non-binary.

3.2 Protocol
Interviews were 90 minute sessions with a few minutes of short questions and instructions at the

start, about 60 minutes of observation in the middle, and an interview at the end. We did not set

rigid time boundaries, so the exact breakdown varied from participant to participant; for example,

when feasible, we tried to end observations at a natural stopping point. We arrived at this format

after some iteration: for the first participant we separately scheduled an interview a few weeks

after the observation; for the second and third participants, we ran closer to 60-minute sessions.

Observation. For contextual inquiry studies, Beyer and Holtzblatt [24] recommend that the

relationship between study participant and study facilitator should be analogous to that of a

craftsperson and their apprentice. In particular, the apprentice observes the work in the context

it occurs — rather than hearing it summarized later. The apprentice should also interject with

questions that clarify their understanding, including by offering interpretations of what they observe
and having the craftsperson either agree with or refine these interpretations.

Concretely, participants were asked to (a) share their screen and (b) narrate what they were

doing and thinking as they worked; they were warned that we would interrupt with questions.

Otherwise, they were instructed to do work that they would do regardless of our presence, in the

way they normally would. For example, if they would normally use the internet to search how to

do something, they should (and did) do so.

1
Coq is in the process of being renamed to Rocq, but nearly all participants referred to it as Coq, so we will do so here.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

Interview. After the observation, we conducted a short interview. We did not use a uniform set of

questions across all participants, so that we could instead tailor the questions to what we observed.

Some questions simply followed-up to clarify points that were raised during the observation. Others

sought to connect the observed incidents with the participant’s broader experience. If, for example,

we saw a participant spending significant time searching for lemmas, we might ask: We saw that

you used X and Y methods for searching — is there a reason you did not also use method Z? How do

you find the search process generally? Are there aspects you find especially tedious or challenging?

3.3 Qualitative Analysis
In total, we collected about 43 hours of session recordings, with automatic audio transcriptions

produced by Zoom. Two authors heavily revised the transcriptions to correct transcription errors

and embed notes about the actions participants took and code snippets participants worked with.

The first author then conducted a thematic analysis [9] of the transcripts. This analysis involved

an initial open coding pass using the Delve qualitative coding tool. In this pass, the author reviewed

transcripts for interesting patterns of usage and tagged them with codes. These codes were updated
throughout analysis for consistency and completeness. The entire authoring team gave feedback on

the codes by reviewing examples and the code book as a whole during meetings and asynchronous

review. When the first author had coded approximately 75 percent of the transcripts and informally

reviewed the others, another author audited the analysis by spot-checking excerpts for all codes.

The first author then revised the code book to incorporate this author’s feedback and completed a

second (axial) coding pass to apply the new code book.

The resulting organization of themes informs the organization of the paper. All examples were

also checked against the video recordings for accuracy.

4 Overview of Findings
In the four sections that follow, we explore four different views of proof assistants, each contributing

a perspective on what successful interaction with them should look like. These perspectives are

overlapping, representing processes that are often taking place simultaneously, though at different

levels of resolution and involving complementary features of the proof assistant.

The first two sections characterize the work involved in developing proofs. In §5 we examine

what it looks like when proof work is moving along. We call attention to the ways in which proof

writers leverage feedback from the proof assistant to guide their progress and the ways that they

seek out actionable feedback from the environment. In §6 we identify challenges that arose —

frequently at the very lowest levels of interaction — as proof writers attempted to communicate

their intent and interpret the outcomes of their actions.

The following two sections characterize usability considerations beyond the proof itself. In §7

we show that proving requires frequent use of external resources such as lemmas, prior proofs,

and reference paper proofs. In §8 we describe how decisions in proof implementation are often

influenced by concerns beyond simply getting the proof to compile, such as the desire to make

proofs more easily maintainable or to make proof intent more transparent.

Readers who are frequent proof assistant users will likely find many of the described processes

familiar; our goal is to take these processes that might otherwise be second nature and illuminate

aspects that may have future relevance for work on improving proof assistants.

5 Proofs in Motion
By watching proof writers engaged in their work, we can observe what it actually looks like to

navigate the complexity and uncertainty of the proving process. Viewing their work not in terms

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

QED in Context 1:5

of finished products but as “proofs in motion” gives us insight into how proof writers use proof

assistant feedback to iterate on their proofs, switch between tasks, and try out different solutions.

5.1 Iteration
Writing a mechanized proof is an iterative process. Proof writers frequently realized, due to proof

assistant feedback, that they should change earlier parts of the proof effort, and then propagated

the changes, again with the help of the proof assistant, by replaying and repairing the proof.

5.1.1 Realization. We start by examining moments of realization — when proof writers realized,

in the middle of a proof attempt, that they should not continue the proof as-is but instead iterate in

some way, such as by revising the current specification or extracting a new lemma. We observe in

particular how proof writers used the proof state to arrive at these realizations.

Specification Revision. One situation, encountered by 14 participants, was realizing while writing

a proof that the specification being proven should be revised. This often occurred when proof

writers detected that a proof has entered into a bad state. Sometimes, the badness was self-evident:

L4 and L13 both encountered base cases that simplified to the unprovable goal False, leading them

to find and fix errors in their lemma statements.

But other times, proof writers needed to notice something more subtle about their proof state.

C3 narrated that they had a relation RR in an assumption and RR’ in the conclusion of incompatible

types. This mismatch told them that their goal was not provable. C3 returned to their lemma

statement to revise it, and continued to write and rewrite different versions of the statement, often

stepping back into the proof to gauge how it did or did not progress, for the next thirty minutes.

Lemma Extraction. Another situation requiring iteration, encountered by 15 participants, was

realizing mid-proof that a new lemma would be useful. Because they were at or near a place in the

proof where they intended to actually apply the lemma, proof writers sometimes extracted snippets

of the proof state and directly used them in the lemma statement.

For example (see note
2
), L10 copied this subexpression from the proof state and pasted it as a

starting point for a new lemma:

(fun i => Polynomial.coeff (Polynomial'.toPoly (head :: tail) i))

They modified the expression and placed it in an equality, where the right-hand side was what they

wanted the expression to simplify into. The eventual lemma statement said

Polynomial.coeff (Polynomial'.toPoly p) i = p.getD i 0.

L10 thus used the proof state snippet as an input for adding new structural elements to their proof.

In fact, some study participants deliberately advanced their proofs to seek proof states that aided

extraction. C1 realized they needed a lemma near the beginning of a proof, but, after struggling to

write its statement directly, returned to progressing the proof until they reached the “interesting”

part of their proof. They then temporarily copy-pasted a few lines of the proof state below their

lemma so that they could reference it while writing the lemma statement. C12 also did a complex

series of maneuvers to extract a lemma: first, they copy-pasted a segment of a proof state, including

an assumption 𝐻 , to form the basis of a new lemma statement; then they realized they wanted

𝐻 to be phrased differently, so they returned to the proof and unfolded a definition; finally, they

copy-pasted the new 𝐻 and edited the proof state excerpt into their desired lemma statement.

C8 went a step further — they set up a “bare-bones, ugly script,” where the explicit purpose was

to discover what lemmas they should extract for future use. “I’m going to see if I can sort of reverse

2
Throughout this paper, we provide code snippets to supplement our examples. They are primarily intended to help the

reader visualize what is happening, and relevant details will be called out. It is not important to understand every detail.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

engineer what I would expect to get as a lemma,” they explained. They started drafting a lemma

in the middle of the script, while the proof state was still visible, before moving the lemma to its

final location. Similarly, C8 also intentionally began proving a statement that lacked necessary

assumptions, so that they could wait for the assumptions to “jump out” as they progressed the

proof and add them then. Further examples of proof writers setting up environments to receive

desirable feedback from the proof assistant can be found in §5.4.

Participants almost always did lemma extraction manually, with one notable exception. C6 used

Coq’s clear tactic to remove all but one assumption from the context. They then used Company-
Coq’s lemma-from-goal command to generate a lemma from the proof state. Later, they cleaned up

the lemma, e.g., by renaming argument names i to id and i0 to instr, and realized during proving

that they needed an additional assumption. That is, lemma-from-goal replaced some of the manual

aspects of extraction, though naturally it could not eliminate the reasoning required to determine

when a lemma is needed and what shape it should take.

5.1.2 Propagation. We next examine what happens when proof writers finished an iteration cycle

by replaying and repairing proofs after a change. Consider C5, who spent their observation session

experimenting with different ways to resolve a problem with their specification. As is typical to

using a proof assistant, each time C5 made a change, they replayed their file and the proof assistant

informed them where proofs succeeded or failed. In fact, they described the ability to receive such

feedback as “the magic” of working in a proof assistant.

Proof writers experienced this magic whenever they propagated a change to the proofs it affects.

After fixing an error in their lemma statement, for example, L4’s previously failing proof refreshed to

now succeed, providing immediate feedback that the fix was correct. Of course, changes sometimes

instead caused failures, and some of these indicated that the change needs further iteration. When

C1 added a new instance of a typeclass and recompiled the files in their development, they realized

previously working proofs now broke; they needed to limit the scope of the instance so that it

would not be used in those proofs.

Failures also indicated places requiring proof repair. After swapping the sides of a bidirectional

lemma statement, L11 tweaked proofs that broke because they relied on the wrong direction of

the lemma. After a more substantial change to their specification, L9 commented out their broken

proofs and interleaved writing new proof snippets, copy-pasting old proof snippets, and repairing

those old snippets to reflect the changes. This process has many similarities to proof reuse (§7.3).

5.2 Context Switching
Proof assistant feedback is helpful in other situations too — in particular, context switching. Proof
writers frequently switched away from a goal and later switched back again. In doing so, they relied

on the proof assistant to maintain the proof state, so they could resume right where they paused.

Twelve participants used Coq’s admit or Lean’s sorry to temporarily skip a goal and work on

a different one, allowing them to prioritize the goals they want to work on. Some prioritization

occurred on the fly, as when proof writers decided to start with an easier case of a proof. L3, for

example, narrated after generating two subgoals, “[The second] goal is easier, so we’ll take care

of that first.” Prioritization sometimes also reflected higher-level strategization. C11 explained

that they use admits until they can establish the “general skeleton” of their proof. C7 explained

they chose to prove a more complex lemma before proving the simpler lemma it depended on to

prioritize ensuring the complex lemma statement was correct.

Implicit in these cases is the fact that proof writers know proof assistants can re-supply the proof

state at a skipped goal when the proof writer returns to it. L6 noted this explicitly, saying they

found context switching in a proof assistant to be “much cheaper” than it would be on paper. When

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

QED in Context 1:7

writing paper proofs, the contextual information is “just in the back of your head, and then if you

switch contexts, you forgot what exactly was in the back of your head.” When writing mechanized

proofs, the context is automatically provided.

5.3 Small-Stakes Trials
Given the complexity of mechanization, proof writers sometimes had an inexact understanding of

what would or would not be accepted by a proof assistant. In these cases, to figure out the right

way to formulate their next step, they engaged in small-stakes trial and error — by interacting with

the proof assistant as an oracle that provides reliable, instantaneous feedback.

In our study, 18 participants engaged in clear instances of trial and error, which we identified

as such because they narrated their uncertainty about whether their attempt would work and/or

tried a series of similar solutions in rapid succession. These trials were performed in tightly scoped

ways, often at the granularity of a single tactics or arguments to that tactic. Participants sometimes

succeeded in a matter of seconds; other times, after they had cycled through the immediately

obvious solutions, they had to pause and try a different approach.

Though trial and error behavior suggests the proof writer’s knowledge of the proof assistant

is inexact, knowing which potential solutions to try and how to respond to errors still reflects

substantial expertise. Consider, for example, when C4 was trying to prove an equality where the

only difference between the two sides was 𝑛 − 0 versus 𝑛. They made this series of attempts over

the course of 30 seconds:

1. change (n - 0) with n. ✗ 2. change (n - 0) with n%Z. ✗

3. change (n - 0)%Z with n%Z. ✗ 4. replace (n - 0)%Z with n%Z. ✓

That is, they realized that they had type-checking issues after Attempts 1 and 2. Then, they realized

that in fact the change tactic, which tries to automatically convert one expression into another,

would not work at all and that they instead needed to switch to replace, which generates a new goal

𝑛 = 𝑛 − 0. To prove this goal, they made another series of attempts over the course of 40 seconds,

(here, the ✗ indicates either a tactic that failed or did nothing):

1. auto. ✗ 2. done. ✗ 3. simpl. ✗ 4. auto. ✗ 5. lia. ✓

While C4 did not immediately remember that the lia tactic would solve the goal, they did know that

tactics such as auto and done might plausibly solve trivial goals like this one. We observe through

examples such as this one that proof writers are able to use the proof assistant’s feedback to turn

their substantial but inexact knowledge into a working proof.

5.4 Sandboxing
We saw previously how C8 deliberately set up their proof environment so that they could use the

proof state to assist with extracting lemmas and assumptions. Four participants additionally created

temporary environments that would better elicit the proof assistant feedback they wanted.

C14, for example, created a temporary lemma whose stated purpose was to “test whether [the

proof assistant] knows” that a particular object is an instance of a particular typeclass. They tried

proving the lemma by exact _, which should succeed if Coq does know this, but the test failed.

They realized they needed to add an import, the test then succeeded, and they erased the lemma.

In addition to quick fact-checking, temporary environments also assisted with figuring out proof

steps without the clutter of the larger proof context. L4 struggled to show in the middle of a proof

that 10
1 ≤ 10

2
𝑖

, given 1 ≤ 2
𝑖
and a number of other, unnecessary assumptions. They wrote a

temporary goal with just the essentials: 10
𝑎 ≤ 10

𝑏
if 𝑎 ≤ 𝑏. Once they figured out this goal, they

ported the proof over to where they were originally. L4 noted that this strategy of separating out a

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

“self-contained example” helps to “remove some of the distracting hypotheses and syntax,” and has

the additional benefit of sometimes making automated library search tactics (§7.4) work better.

6 Conversing with the Prover
Proof writers constantly encountered challenges conversing with their proof assistants. In one

direction, they needed to speak to the proof assistant in a way it can understand, at sometimes

gruesome levels of precision. In the other, they needed to understand the proof assistant’s feedback,

which could include unwieldy proof states and confusing error messages.

These communication challenges were significant sources of friction. C3 expressed their frustra-

tion with what they called “overhead,” saying, “Fifty percent of my time is figuring out why doesn’t

Coq do the thing that is very obvious, and fifty percent of the time is actually reasoning about the

things which are important.” L1 spent the observation session dealing with “nonsense,” saying that

only after an hour of this were they finally ready to address “mathematically meaningful questions.”

6.1 Speaking to the Prover
When speaking to the prover, a proof writer needs to translate the ideas in their head into a highly

precise and sometimes unnatural language.

6.1.1 Precision. Proof assistants demand extreme precision, which often led to proof writers

fussing with details that are incidental to the main ideas of the proof.

Proof writers faced precision problems when they understood, conceptually, what tactic they

wanted to use to advance their proof, but had trouble invoking the tactic in exactly the right way.

For example, L10 wanted to do a case analysis on the expression p.length. Writing

cases p.length

did not work as intended: it led to an impossible goal where the conclusion was only true if p was

empty, but the fact that p.length was zero was missing from the context. During the session, L10

solved the problem by doing a case analysis directly on p, but we determined later in the interview

that it would have worked if they had written

cases h : p.length

to force the necessary information to be retained in an assumption h. That is, L10 knew what they

wanted to do (a case analysis on the length), they knew the tactic to do it (cases), and they correctly
identified the issue that arose (that length was not retained as an assumption), but they had to

pivot to a different approach because they didn’t realize they could just add two characters.

In another example, C4 briefly encountered an issue where they tried to unfold the definition

of len, which was implicitly used in an assumption. Nothing happened. After some investigation,

they realized they needed to first unfold an outer definition; only then could they unfold the inner

len. C4 remarked, “Coq really needs little steps by little steps always.”

Another source of precision problems was when proof writers decided to use a lemma but needed

to figure out exactly how to use the lemma as desired. This could involve pinpointing where in the

goal they wanted to do a rewrite. L15 commuted specific summands in their goal by writing

conv => lhs lhs rw [add_comm]

(with tabs representing newlines); the two lhs commands tell Lean precisely where to rewrite using

add_comm. When applying lemmas, participants often needed to provide arguments manually; for

example, C8 had to instantiate the seventh argument to a lemma:

iApply (ewp_sitem_open _ _ _ _ _ _ (ieq ?[y]))

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

QED in Context 1:9

They described this as a “weird hack” for unification to work. From these examples, we see that it

was not enough for proof writers to know the lemma they wanted to use and how, conceptually, to

use it; they also had to carefully express the usage in the precise language of the proof assistant.

6.1.2 Naturalness. Styles of reasoning that are natural to how proof writers want to think about

their proof or write it on paper sometimes feel unnatural in a proof assistant.

Mathematical intent that is easy to express in paper proofs can require extra effort to mechanize.

For example, Lean provides a proof mode, calc blocks, to facilitate proofs involving chains of

equalities. However, while it is very natural in a paper proof to also, say, subtract or divide a

term from both sides of an equation, L13 found that they have to “jump through a few hoops to

make that style of proof fit in a calc block well.” For C14, one challenge that seemed “fundamental”

to the formal proof setting was that it can be “quite non-trivial” to convert between equivalent

representations of a definition. By contrast, “When you do things on paper, you can fluidly jump

between different design choices, as long as you know how to make up for it.”

A few participants commented on the difference between forwards reasoning, where the proof
proceeds from the assumptions towards the conclusion, and backwards reasoning from the conclu-

sion towards the assumptions. L8 said, “When I think of a properly written proof in mathematics, I

think you should be always going forward and trying to justify what you’re doing. This implies this,

and this is true because of this.” C11 said that forward reasoning seems “a little bit more natural to

human brain reasoning,” but Coq is “constructed to make backwards reasoning super easy.”

C15 also said that, in a proof assistant, it is “usually more tempting” to do backwards reasoning.

A downside of backwards reasoning is that one might start “using the proof assistant like a video

game” and become narrowly focused on making incremental progress. Forward reasoning, by

contrast, requires active thinking about what the “intermediate assertions” of the proof are. C15

cited ease of forward reasoning as a reason they like SSReflect tactics.

6.2 Listening to the Prover
Listening to the prover requires just as much translation as speaking: proof states and error messages

can be unwieldy and confusing for those who are not already fluent.

6.2.1 Unwieldy States. Proof states are critical for tracking proof progress, but they can be long

and complex. C1, for example, had at one point 44 lines of variables and assumptions in the context

but noted that only a few lines were relevant.

One common challenge with managing proof state complexity is determining which definitions

to unfold and which simplifications to perform so that the proof operates at a desired level of

abstraction. Too much unfolding leads to proof states that are too verbose. C8 said that, at the start

of their project, they wanted to let Coq “compute as much as it can,” but this led to an “explosion”

of the proof state, to the extent that goals became over 30 lines long. C4 shared that they found it

difficult to find the “sweet spot” when unfolding definitions, where the right details are exposed

but before the proof states become “way too big for you to even understand what it says.”

Oversimplification can also cause problems later in the proof. L9 encountered a complex proof

state that they transformed into a shorter, simpler state with the simp tactic. The next step of

the proof failed, so they tried removing the simp, and the failing step worked! “Wait, what?”

they wondered. Upon further examination, it appeared that the seemingly helpful simplification

rearranged their state so that typeclass inference failed. That is, even actions that make the proof

state nicer to look at can have bad downstream effects.

Despite challenges with proof state management, we were surprised at how adept participants

could be at interpreting the domain specific details of their proof states. For example, C10 encoun-

tered a proof state excerpted below, describing it as a “big ugly thing”:

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

(holds
(set_nth 0 ([seq row_mx u v ord0 i0 | i0 <- enum 'I_(n + 1)] ++ r)
(n.+1 + i) x)

... 7 more lines

After considering for just a moment, they concluded that it “essentially gives me what I want.”

6.2.2 Confusing Errors. When a proof assistant rejects a proof step, it displays an error message to

help the proof writer debug. Sometimes this message is not actually so helpful.

Indeed, proof writers can be misled by error messages, especially when there is some distance

between the root cause and the trigger of the error message. C3 modified an intros tactic to manually

provide assumption names, instead of using auto-generated names. But then a previously successful

apply tactic later in the script, which did not refer to any of those names, now gave a “failed to

unify” error. After a moment of bewilderment, C3 found that they had accidentally provided only

two of the three assumption names to intros, causing the proof state to have the wrong shape.

Proof writers can also struggle with error messages that expose low-level details that they do

not want to think about. L9 had a rewrite that failed with “motive is not type correct,”which they

were “never really sure how to deal with.” They fixed the issue with some trial and error. “I’m very

much a mathematician,” L9 said. “I don’t know much about ... the underlying stuff going on in Lean.

I just try to work around it.” Similarly, C7 recounted difficulties with debugging typeclass issues

due to unhelpful error messages:

“The error message just says a whole bunch of stuff – something evars, and lots of

shelved stuff — and you have no idea what’s going on. It doesn’t tell you what’s

missing. ... It tells you at a very low level, oh, we [the proof assistant] can’t unify this,

we can’t find something. But the thing they tell you is not really close to what you

actually need, and that gets really frustrating.”

Sometimes, these low-level details reveal that portions of the proof state that appear the same

are in fact not. C6 found themselves with a goal of t1 && t2 and a seemingly identical lemma with

a conclusion of the form t1 && t2. They tried to solve the goal by applying the lemma, only to

encounter an error message of this form:

Unable to unify "if ?M17926 && ?M17927 then True else False" with t1 && t2 = true

Where did the if then else and = true come from? As C6 realized, the issue was that the goal and

the lemma were implicitly relying on two different, incompatible ways of coercing booleans into

propositions, despite the fact that they looked exactly the same on the surface.

7 Proof Sources and Resources
Mechanized proofs are rarely written completely from scratch. Instead, the proof writer might adapt

a proof from an existing source, such as by translating a paper proof or by reusing a previously

mechanized proof; they might also rely on existing resources, by searching for relevant lemmas or

by seeking information about proof techniques.

7.1 Translating Paper Proofs
Some mechanized proofs originate in whole or in part on paper — a more malleable, less rigorous

medium. Five participants explicitly referenced a paper proof during the observation session, and a

few others mentioned that they do so in the interview. The sources of these proofs ranged from

mathematical papers to textbooks to olympiad problem solutions.

Mechanization generally requires making many implicit details in a paper proof explicit. L4

remarked that paper proofs are often ambiguous as to whether a variable should be universally

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

QED in Context 1:11

quantified or whether it specifically refers to something in the current context. For example, in a

paper proof they translated during the observation session, the proof inducted on 𝑛, but also made

intermediate statements that were implicitly true of all 𝑛. L4 chose in this case to err on the side of

universally quantifying these statements, so they could more flexibly apply the statements later.

Details about the structure of the proof, especially if they differ from the proof assistant’s built-in

support, can also be tricky to handle. L2, for example, described a textbook proof that proceeded by

“induction on the absolute difference of these two numbers,” subject to some bounds, noting that,

though complex, this induction strategy is “understandable pretty quickly for a human.” But they

had difficulty expressing it in Lean, needing to rely on (and justify) a custom induction principle.

Though challenging, the particularities of the mechanization process can also be precisely why

mechanization is valuable. L1 observed that, in a mathematical paper, the author might claim the

existence of an algorithm that is implicit in the proof, but the proof might not make explicit what

that algorithm is. “When you migrate that proof into Lean, you actually need to construct it, and

then the construction actually produces the computational content,” L1 said.

L5 noted that one reason they derived value from mechanization is that using Lean is “very

clarifying in terms of taking my intuition for how these objects should work and turning them into

actual, proper mathematical definitions.” The difficulties in mechanizing certain kinds of definitions

are not inherently bad and can instead lead to better design choices. For example, they explained,

they had something “essentially coinductive” but wanted to avoid coinduction both because Lean

did not support it well, “and relatedly” because it is uncommon among mathematicians — Lean tends

to focus on supporting techniques that are in common usage. That is, L5 said, “The expositional

problem of how should I write this down in a way that will be accessible to mathematicians is sort

of correlated to what did Lean actually make the effort to support.”

7.2 Doing Scratch Work
Proof writers sometimes did scratch work alongside mechanization, either on paper or in a code

comment. For example, C1 (on paper) and L4 (in a comment) worked out examples of how a

definition should work on small inputs. C1 used their examples to guide the Coq definition, while

L4 used the examples after writing the Lean definition, to think through and fix an off-by-one error.

L13 intermittently wrote on paper during the observation session. “I don’t have a strict set of

equations that I’m following step by step to translate into Lean, and so I’m swapping between

thinking about the proof in Lean and then going back to think about how I’d write this as an

informal math proof,” they explained. On paper, they explained, it is easier to do simplifications

and read notation such as fractions.

C3 left temporary notes such as this one about what their lemma statement meant, using code

comments as a kind of scratch pad:

(* [k] will terminate with postcondition [RR] and invariant [𝜑] *)

C3 explained that the “big expression here” (the lemma statement) just says that 𝑘 will terminate.

Writing this fact down “helps me retrieve this fact so I don’t have to reparse” the entire lemma.

7.3 Reusing Proofs
Of course, mechanized proofs can resemble not only paper proofs, but also prior mechanized proofs.

An important aspect of this task was finding a chunk of code elsewhere in their development that

the participant believed would sufficiently resemble the situation at hand. This process involved

recognizing conceptual similarities between parts of the development.

Proof writers drew connections between lemmas based on commonalities in the statements,

despite some differences. L3 identified a relevant prior lemma because the underlying “patterns

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

of computation” in the functions involved were essentially the same, even though the literal

“computational object”s differed. C1 said if they had a proof where, for example, lists are an instance

of the functor typeclass, they might adapt this to prove that the same data structure is also an

instance of a different typeclass (e.g., lists are traversible functors) or that a different data structure

is an instance of the same typeclass (e.g., trees are functors).

In addition to identifying similarities in proof structure across lemmas, participants also identified

opportunities for reuse within the same lemma. C2’s task, for example, was to extend an existing

proof after new typing rules were added. They frequently looked to previously proven cases, chosen

based on their type theoretic knowledge of which “derivations sort of have the same shape,” such

as when “substitutions are in the same places.”

7.4 Searching for Lemmas
An extremely common activity when writing a mechanized proof is lemma search: finding a suitable,
previously established fact to advance a proof. Proof writers leveraged existing tools for lemma

search in combination with their — often quite specific — assumptions about the target lemma.

7.4.1 Engines. We start with an overview of the kinds of lemma search features (“engines”) partic-

ipants used, which differed substantially between the two proof assistants.

Ten Coq participants used the Search command (either directly, or indirectly using an editor

shortcut) during the observation session. Queries contained substrings of the lemma name, iden-

tifiers appearing in the lemma statement, patterns that the lemma statement must obey, or a

combination. As an example of searching by lemma name and text, C1 ran the command Search
binddt “rw” letin, which returns lemmas whose name contains the substring “rw” (due to the

quotes) and whose statement contains binddt and letin. As an example of searching by pattern,

C10 ran a command of the form Search ?a + _ == ?a + _, which returns lemmas whose statement

contains as a subexpression the == equality of two sums whose first arguments are the same.

On the Lean side, participants used several search engines: Nine participants used question-mark

tactics, which automatically search for and suggest lemmas that can be used in the current proof

state, subject to some criteria. For example, simp? tries to return a chain of simplification lemmas.

Five participants looked for a lemma through the mathlib online documentation, whether by

querying substrings of the lemma name through the search bar or by navigating to a relevant

definition and browsing nearby. Three participants usedMoogle.ai to do lemma search; Moogle

describes itself as a “semantic search engine” for mathlib that accepts natural language queries.

Two participants used Loogle, which has similar functionality as Coq’s Search command.

Lean participants sometimes mixed-and-matched these mechanisms, moving to an alternative

when they were unable to find the lemma they were looking for. L10 spent 15 minutes searching

for a lemma before determining that it was not yet in mathlib, and writing a pull request to add it.

During this time, they used approaches including simp?, the documentation, and Moogle.

7.4.2 Specificity vs. Fuzziness. When choosing a search engine and formulating a search query,

proof writers had to consider what assumptions they have about the lemma’s name or contents,

and how accurate they think these assumptions are. Searches with a high degree of specificity often

accelerated the process, where the target lemma was one of just a few results, but even subtle

inaccuracies could cause the lemma to not be included at all. On the flip side, search strategies that

permitted fuzziness were more forgiving of inaccuracies, but also less effective at narrowing results.

Search by Name. An especially specific approach is predicting the lemma name based on naming

conventions. One common convention is for the lemma name to be tied to the definition names

within the lemma statement. C10 reasoned they had “nth in front of set_nth” in their goal, so the

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

QED in Context 1:13

lemma they needed was probably nth_set_nth. (It was!) Similarly, L10 noted that mathlib lemmas

are “named for the sequence of functions that are applied as they appear.”

L15 found eight lemmas directly through themathlib documentation’s search bar, often by trying

variations in rapid succession; for example:

searching for... multiplicity.finite_prime_left searching for... Nat.lt_of_succ_le

queried... finite_of_prime ✗ queried... Nat.lt_off ✗

multiplicity.prime ✓ Nat.lt_iff_succ ✗

Nat.lt_of_succ ✓

The mathlib search bar allows queries to be a non-contiguous subsequence of the lemma name

(e.g., multiplicity.prime above) but is unforgiving of other discrepancies. We see above that fatal

discrepancies included both typos (“off” instead of “of”) and conceptual errors about the contents

of the lemma (“iff,” used in mathlib for bi-implications, instead of “of,” for single implications).

L15 explained that contributing factors to their success in searching for lemmas by name were

that they had seen many of the lemmas previously and that they were familiar with mathlib’s
naming conventions. Such conventions can require quite fine-grained knowledge: L13, for example,

described difficulties knowing conventional abbreviations, such as “coe” for “coercions,” where

searching for the full word would often not elicit the target lemma.

Search by Pattern. Another approach that enables a high degree of specificity involves searching

by the shape of the lemma, in particular with the usage of search patterns in Coq. (Although Loogle

does support patterns, we did not observe any Lean participants search by pattern.)

Patterns can fail to match a lemma in subtle ways. When C10 sought a lemma that contained

the subexpression \poly_(i <? n) E1 i, their attempt to search via the pattern \poly_(_ < _) _ did
not return that lemma. They speculated that while the notations match visually, the underlying

terms might differ. C4 said they found it challenging that a lemma that is conceptually equivalent

to their search might be excluded, such as if they flip the two sides of an equality.

Search by Subject. A fuzzier approach is to search by definition names that should appear within

the lemma statement, but not details about how the definitions should be related.

From L14’s perspective as both a library designer and user, when thinking about what kinds of

lemmas they tend to reach for, they explained that “the most common thing that happens is I have

two concepts, and I want to see how they interact.” They used the Loogle search engine to search

for pairs of definitions. As we saw above, Coq’s Search command also supports this kind of search.

Combining a more specific approach such as patterns with this approach can greatly narrow a

search. C15 searched for just Permutation before eventually adding a pattern and searching for

Permutation (_ :: nil). With the new query, their desired lemma Permutation_singleton_inj was the
first of eight results, whereas previously it had been the 36th in a long list.

Search by Natural Language. The fuzziest approach of all is natural-language queries.

One situation where support for natural language search would have been useful was that of C4,

who searched for the substring “range” in the source code of the library they were using. They did

not find the lemma they were looking for; later, it turned out that the lemma was in the file they

were browsing, but it did not contain the string “range” in its name or body, since the range was

instead written in the form an inequality. C4 said in the interview that they wished for an engine

that is “much closer to the intention of the search rather than what’s strictly written.”

Moogle supports natural language queries for mathlib lemmas, though it appears to be sensitive

to small differences in phrasing. L4, who said they usually reach for Moogle first, searched for

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

“power of sum equals product of powers.” Unfortunately, this query returned results about power

sets, whereas they wanted lemmas about powers in the sense of exponents. They then changed the

first word of their query to “pow”; the first result was the lemma they needed.

Search in Context. Search strategies vary not only in query specificity but in context specificity, the
extent a search engine is aware of where a lemmawill be used when deciding what results to include.

For example, among Lean’s simp?, Coq’s Search command, and Lean’s mathlib documentation,

simp?, which returns lemmas only if they can be used in the current proof state, is the most

context-aware; then Search, which returns lemmas only if they are in scope in the current file; then

the documentation, which, as an online resource, returns lemmas regardless of context.

While context awareness certainly helps with reducing the quantity of results, lack of context

awareness can also be useful. L10 found a lemma through the mathlib documentation that they did

not initially find through simp?, since it was not yet imported. C8 found a lemma with the Search
command at one point in the proof and then did not use the lemma until minutes later, after they

had performed the necessary rewriting. When C4 searched for lemmas about one definition, they

noticed that many results contained expressions where this definition was composed with another.

They changed their goal to match this form and then were able to use a lemma from the query.

7.5 Seeking Other Information
Proof assistant users, even experienced users, may need to learn about tactics and techniques they

are unfamiliar with while writing a proof. This can be a difficult process: L8, for example, said they

find tactics to be “a black box” and that they need to learn them on a “tactic-by-tactic basis,” as

opposed to being able to learn “general principles.” To facilitate information seeking, participants

leveraged a combination of documentation, examples, and community channels.

7.5.1 (Not) Using the Documentation. C8 said that in the past few months they had used the Coq

reference manual “a dozen times a week at least.” C2, on other hand, said, “I generally don’t tend to

read a lot of the documentation and just sort of figure out what’s going on with whatever tactics

just by experimentation.” C2 briefly accessed documentation about the syntax of the SSReflect
library during the observation, but then decided, “I don’t think I need to understand it.”

It can be quite challenging to guess what a query for an unknown tactic or technique would

look like. When asked about their experience with having an abstract idea of what they want to

accomplish and finding the tactics to do it, C8 said they found this process to be “very difficult”

and that they “spent maybe a week trying to do something once.”

An alternative to querying the documentation is simply reading it. L13 shared, “I will sometimes

just scroll through the tactics list and read about some that exist, and then hopefully in the future, I

will remember that I have learned about a new tactic, and maybe I’ll be able to use it.” In fact, they

said, “Rarely do I discover tactics while I’m actively coding.”

7.5.2 Using Examples. Proof writers made use of code examples, both by reading textbook examples

and by adapting snippets from library source code.

L10 and L13 used examples of the cases and induction’ tactics to help them figure out the correct

syntax. In L10’s case, they found the example directly in the documentation, by hovering over the

cases tactic in the VS Code editor, and in L13’s case, they found the example in the Mathematics in
Lean online textbook.

When creating a new typeclass, L12 copy-pasted a mathematically adjacent typeclass definition

already in mathlib and modified it for their use case, since they did not know all of the syntax “off

the top of [their] head.” L12 said that because they are relatively new to Lean, they tend to rely on

“looking at the patterns that other people who are writing this code are using.”

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

QED in Context 1:15

The process of adapting an example can be elaborate, as in the case of L8, who was seeking to

learn how to develop a custom induction principle to reduce repetition in their proofs. Since they

remembered seeing something similar in the Lean source code for division, they navigated to that

file and located a proof that used div.inductionOn. They copy-pasted the proof into a new file and

developed a modified version that did not use div.inductionOn. Indeed, they explained that their

strategy was to take an example using the desired, “idiomatic” approach and work their way back
to the “wrong” approach, so that they could see a connection that would then help them move

their code that used the wrong approach towards the idiomatic approach. (The observation session

ended while they were in the midst of the second step.)

Part of the complexity of this situation can perhaps be attributed to the fact that the example L8

used was not an intentional, pedagogical example of the technique they were trying to learn, but

rather a piece of source code that they happened to know existed. They said they wished there

were more examples, especially ones that are not too basic, as they would be difficult to generalize

to more complex situations, but also not too advanced, as they would be difficult to understand.

Similarly, C8 wished for more examples of “more hardcore tactic language uses.” They cited the

repository coq-tricks3 as the kind of resource they wished there were more of.

7.5.3 Asking Others. Seven participants explicitly said they seek help from other proof assistant

users, whether in their local community or by asking (or browsing) on forums such as Zulip.

C8 commented that they are “very lucky” to have more experienced colleagues to ask for

assistance. “Without the people in my office building, I would have had a lot more trouble going

from novice to intermediate,” they said. At one point during the observation, L13 was trying to

unfold a definition only on the left-hand side of their equation. They first went to the documentation

for the unfold tactic and then, not seeing a solution, they searched in the Lean Zulip for “unfold

left hand side.” From a thread asking the same question, they found the suggestion to use conv_lhs,
which worked. L12 said they often post “silly questions” on the new members stream in the Lean

Zulip, acknowledging that they feel comfortable doing so, but this may not be the case for everyone.

7.5.4 Copilot. A few participants had Copilot, an AI assistant in Visual Studio Code that suggests

code snippets, enabled as they worked, and occasionally accepted its suggestions. Because the

number of usages was small, and because programmer-AI interactions are an area of research

worthy of separate examination [7], we do not discuss Copilot further here.

8 Beyond QED
While the headline benefit of a mechanized proof is ensuring that some top-level theorem is

true, we saw that proof writers also cared deeply about the proof itself. Throughout our study

sessions, participants described the numerous, subtle, and sometimes conflicting qualities they

value in proofs, beyond simply “it compiles.” In this section, we focus particularly on maintainability,

communication of mathematical ideas, and compliance with conventions.

8.1 Maintainability
Proof scripts change over time, in response to a wide variety of factors. In light of this, 13 participants

expressed concern about maintainability of their proofs as they evolve.

A core aspect of maintainability is robustness to changes. L2 made a proof robust to changes in its

underlying definitions by enforcing strict abstraction boundaries. During the session, they initially

wrote a proof using the rcases tactic, whose behavior relies on the implementation details of the

3
https://github.com/tchajed/coq-tricks. Its README notes, “Some tips, tricks, and features in Coq that are hard to discover.”

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/tchajed/coq-tricks


736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

definitions involved; then, they refactored the proof to use a lemma that preserved the abstraction

barrier between the proof and these details.

But participants wanted more than just robustness to failure — they also wanted to ensure that, if

the proof does fail, it does so in a way that is conducive to understanding and fixing the failure. C5

said they prioritize structuring a proof so that it “breaks exactly in the place where things actually

break.” C5 showed an example of a proof in their development structured like the one below on the

right and explained why they preferred it to the alternative on the left.

Proof. Proof.
induction H. induction H.

* 1: constructor. 1: now constructor.
(rest of proof) (rest of proof)

In this context, constructor alone solves the first goal, so the now is unnecessary. But suppose a

change were made so constructor no longer solved the goal. The right proof would fail precisely at

Line *, since now fails if the goal is not solved, while the left proof may fail at some unknown point

later in the proof. C5 proactively uses “terminators” such as now to make failure localization easier.

The relationship between automation, robustness, and ease of fixing failures is complex: in some

cases, automation improves robustness, obviating the need to fix failures; in other cases, it causes

proofs to break in ambiguous and less local ways. Consider, for example, Lean’s simp tactic and

variants. The simp tactic automatically applies known lemmas in a black-box way. Alternatively,

simp only [lemma1, lemma2, ...] applies only explicitly provided lemmas.

Is simp or simp only preferable for maintainability? It depends! L9 encountered an error in the

last line of a previously working proof:

simp only [vcomp_eq_comp, comp_app, id_app', id_comp].

Upon examination, they realized that they now needed to refer to the lemma comp_app as Nat-
Trans.comp_app instead, likely due to a namespace change. They could just make the fix within the

simp only, but they opted to instead replace the line with just a simp, which automatically figures

out the correct name. (Immediately after, they further refactored their proof to replace simp and

the line preceding in their proof with the proof search tactic aesop_cat.) That is, more automated

tactics are sometimes preferable because they are more robust to certain kinds of changes.

Conversely, simp only may be preferable in other cases. L10 briefly had a simp in the middle of

their proof, but they converted it into a simp only. They explained that they did not want to leave

a “raw simp in the middle”, which simplifies the goal but does not solve it, since if the behavior

of simp changes internally, then this can cause problems later in the proof. (This is consistent

with Lean’s official recommendation
4
to avoid “non-terminal” simps.) That is, more restrictive, less

automated tactics like simp only may assist with failure localization.

8.2 Communication
Participants also cared what their proofs communicated mathematically.

Organization. One means of communication is to indicate the logical units of a proof. The

following examples demonstrate how considerations around how to organize these units might

play out at the granularity of tactics, logical proof steps, and lemmas.

At the tactic level, we asked C6 why they wrote intros ; cbn despite the fact that the first tactic

only generated one subgoal (so the semicolon was not needed). They answered that they liked

to chain together series of tactics that represent “one chunk of thought” so that they would be

evaluated as a single unit when stepping through the proof.

4
https://leanprover-community.github.io/extras/simp.html#non-terminal-simps

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://leanprover-community.github.io/extras/simp.html#non-terminal-simps


785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

QED in Context 1:17

At the level of logical proof steps, L7 showed us the proof outlined below, which was the result

of a refactoring to better communicate its structure:

have H1 i := by
... 11 lines of proof

have H2 i :=
... 7 lines of proof, which use H1

2 lines of proof, which use H2

Originally, the proof was written “upside down.” They started with the last line above, which

created a goal corresponding to what is now H2, and in the course of proving H2, they needed to

prove what is now H1. They noted that the “bulk of the work” happened in the proof of H1, and
this version of the proof allowed them to “logically separate” that work from the rest of the proof.

C1 showed an example where they had comments (* Merge LHS *) and (* Merge RHS *)
interspersed between the lines of the proof. Many of their proofs naturally proceed in “stages,”

where they performed rewrites on one side of an equality and then on the other side. The rewrites

could be done in any order, but instead of “freewheeling,” C1 said they had learned to structure their

proofs in this organized way to improve understanding. Similarly, they chose not to incorporate

heavy-duty automation, since they wanted to be able to step through the steps of their proof. “I

really specifically am trying to record how that equation gets proved,” they said.

Proofs could also be organized at the level of lemmas. C5 focused on communicating the content

of their proof not through their tactic scripts but rather through their lemma statements; they

aimed to separate out “readable and self-contained” lemmas that form “sensible logical units.” Then,

they explained, “The big proof by induction is not very interesting, usually. It’s about combining

all of the things that you have already.”

Intent. Beyond structural considerations, proof writers also tried to make stylistic decisions that

signal their mathematical intent, such as choosing betweenmultiple viable tactics. L4 discussed goals

that could be solved by the omega, linarith, or positivity decision procedures. Of these, “positivity
is less powerful, but it expresses more intent,” since proofs by positivity must use “straightforward”

reasoning. Indeed, they elaborated, “If I’m reading a proof and I see linarith or omega, I’m like, I

don’t want to try to dig into why this is true. I’m just going to trust it. Whereas this positivity, it’s
telling me that you can definitely just glance at this and see what’s going on here.”

As another example, L2 discussed why they opt to use the exact tactic to supply a lemma in

certain situations instead of using apply, which is more powerful overall. “The idea is, when you

exact, that’s signaling that you’ve got the final thing that you want,” they explained. “You can

apply a number of theorems, but your last step should almost always be an exact. It just signals to
whoever’s reading the code, now we have the thing.”

The fact that proof writers sometimes avoid maximally powerful tactics in favor of ones that

convey their intention is reminiscent of what we saw above, where proof writers sometimes

eschewed maximally powerful automation in favor of techniques that streamline understanding

and fixing failures.

Concision. Sometimes proof writers care not only about the content of a proof but also how

concisely it is written. To achieve better concision proof writers may retroactively rearrange their

code to avoid unnecessary steps. L3, for example, was writing a proof of roughly this form:

match h with
| case1 => simp [h, defn] ...
| case2 => simp [h, defn] ...

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

They tweaked it to unfold defn before the match, allowing them to remove the two highlighted

steps. L3 described this as a “neat little trick” to do some “proof golf” (cf. code golf).

Concision can itself be the end goal — some participants expressed that shorter proofs simply

feel nicer and cleaner — but it can also tie in with the above theme of signaling intent. Throughout

the observation, L9 regularly sought opportunities to decrease the length of their proofs. They

explained that the proofs they worked on that day correspond to just one line of mathematical

reasoning, so they wanted the mechanized version to be similarly concise. For more complex

proofs, they still valued concision, since they want their mechanized proofs to match the number

of high-level steps in the “normal math proof” as closely as possible. “A shorter proof signifies that

every step I’m taking really matters. It’s really quite crucial that I do all of these [steps],” L9 said.

8.3 Conventions
Mechanized proofs do not exist in isolation; neither do proof writers’ values about what makes a

good proof. In particular, they may hope to integrate their work into a larger project, which may

in turn come with conventions that contributors are encouraged or required to follow. Even in

self-contained projects, users still find utility in good conventions.

Sources of Conventions. For Lean, the dominant context proof writers work in is its mathematical

library, mathlib. Nine participants explicitly mentioned that they have contributed or plan to

contribute to mathlib — indeed, three participants modified their code in response to reviewer

comments on a previous pull request during their observation sessions.

For Coq, the landscape of libraries is more fragmented. C10’s work builds on top of and should

eventually be integrated into mathcomp, a mathematical components library, and C14 was doing

the same but for Coq-HoTT, a homotopy type theory library. Several participants used SSReflect
tactics, rather than built-in tactics, to varying extents; this influenced their proof style.

Proof writers have also established and followed their own conventions. Doing so might involve

being consistent with collaborators on the same project or, even in the absence of collaborators,

being consistent with themselves, to keep a large development organized.

Examples of Conventions. Many of the conventions involved maintaining consistency in how

lemmas within a library were named, formatted, and organized. As described in §7.4, participants

benefited from their knowledge of naming conventions when searching for lemmas. When writing

new lemmas that they hoped to merge into libraries like mathlib, participants were also careful to

follow library conventions.

Not only can conventions aid lemma search, conventions (or the lack thereof) can also affect

lemma usage. C15 said they found it frustrating when libraries are inconsistent about, say, which

arguments to a lemma are implicit or explicit, since this forces them to look up the statement of

the lemma when using it rather than just proceeding on instinct. Lack of consistency “makes it

harder to fit the library in your head.”

Conventions can also support specific technical aims. In response to comments on their mathlib
pull request, L11 reversed some lemmas so that the simpler side was on the right of an equality or

if-and-only-if. Since rewrites in Lean are by default from left to right, this convention means that

when simplifying using such lemmas, “things actually become simpler.” C9 wrote a proof using

tactics from a library called Iris, but then decided to rewrite the proof to not use these tactics. Doing

so allowed them to remain consistent with their convention to not use Iris tactics in this part of

their proof development (and avoid the extra import to access the tactics).

Cultures of Proof. When projects such as mathlib establish conventions about what constitutes

good style, they affect not only the proofs that are written but also the proof writers themselves.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

QED in Context 1:19

One positive impact of this phenomenon is that proof writers might be alerted through reviewer

comments to new techniques and tricks. For example, one comment to L12 informed them that

have statements could take parameters, allowing them to refactor the proof snippet on the left into

the one on the right.

have hU : ∀ z, ... have hU (z) : ...
intro z // no intro

L12 said they liked the new version “much better,” since it allowed them to rid the proof of the

“boilerplate-y” line with the intro tactic.

Conventions can also suggest to proof writers the cultural values of a proof community. At

multiple points during their observation, L2 experimented with refactoring certain tactic-based

segments of their proof script to be term-based instead. The proof below on the left, for example,

was changed to the one on the right with the help of Lean’s show_term command:

intro _ exact fun _ => Or.inl (Eq.refl zero)
left
rfl

Based on L2’s experiences with mathlib and reading others’ code, their understanding is that

proofs that are term-based or otherwise shorter (i.e., fewer lines of code) are often preferred by the

community. L2 said that, while proof terms can signal “don’t read this” when “nothing interesting”

is happening in a section of the proof, they find that tactics are sometimes much clearer.

L2’s impression is that preferences in themathlib community are rooted not only in practical and

aesthetic considerations but also in cultural considerations. “I think in some sense there’s this idea

that you’re smarter if you use proof terms,” they explained. They felt that there is a “bro culture”

around “how unreadable can I make my code.”

We want to be careful not to overfit on the precise case of tactics versus terms, since partici-

pants overall expressed a range of views on when they might prefer one over the other. But L2’s

experiences illustrate how a community’s norms, while useful for standardization, can also have

unintended negative effects on the community’s culture. A more targeted examination of this topic

would be an interesting avenue for future work (see §9).

8.4 Other Considerations
Easy maintenance, clear communication, and consistent conventions were the proof values partici-

pants espoused most frequently and enthusiastically, but other values were mentioned as well.

One such value was performance of proof-checking. L4 noted, for example, that they sometimes

take into consideration the performance penalty of using high-powered search tactics like omega
and aesop. Performance can be difficult to gauge accurately: for example, L8 said that they assumed

term-based proofs should always be faster than their tactic-based counterparts, but were informed

by Lean developers that this was not necessarily the case, though L8 was not sure exactly why.

Proof writers may also care not just about how the proof script behaves but also the characteristics

of the underlying proof term. C14, for example, was working with homotopy type theory, where

the path of equalities between terms matters, not just the fact that the terms are equal. For this

reason, C14 said, they preferred to avoid tactics like rewrite, which sometimes produced a path of

equalities that solved the goal but made the proof term difficult to work with in later proofs.

9 Discussion
We now distill our study findings into some high-level takeaways about patterns of proof assistant

usage. For each observation (OBS), we provide one or more recommendations (REC) for future

directions of proof assistant improvement.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

OBS1: Proof states inform more than just the next step: proof writers interpret the state within the
broader context of their proof effort and leverage it to direct iteration.
Prior to this study, we might have said that proof writers interact with proof assistants by

writing a proof step, seeing the updated proof state, and using that state to determine the next step.

Certainly this is part of the picture, but not the whole picture.

We saw in §5 the iterative nature of proof writing. Proof writers may look at a proof state and

realize that, rather than continue to make local, linear progress, they should redirect their attention

elsewhere. They may realize, for example, that the goal is unsolvable, so they need to revise their

specification, or that it should be solved elsewhere, so they should extract a lemma. When they are

ready to return, they return to their proof to see the (perhaps changed) proof state again.

These iterative cycles happen so often that it is easy to take them for granted, but they are worthy

of a closer look! Proof writers and proof assistants work in harmony: the proof writer conducts

the process, deciding what to focus on and how, while the proof assistant provides feedback on

demand.

REC1: Center iteration on proof ideas as a core strength of proof assistants.
The proof assistant’s constant feedback helps proof writers explore, clarify, and refine their

reasoning as they progress in their proof. We suggest centering and building on this strength in

future proof assistant development.

We should re-examine proof assistant affordances in light of the observation that proof writing

occurs non-linearly. For example, modern IDEs often provide proof state diffs, which highlight

what is new about each proof state since the previous step. But, due to the non-linear nature of

much proof writing, the actual previous step in the proof writer’s workflow is not always the literal

preceding step in the proof script; the most recent edit — which the proof writer may instead want

to see the effects of — could have been to an earlier part of the proof or to the specification itself.

We should also seek opportunities to give the proof assistant a more proactive role in the iteration

process. We saw that proof writers regularly need to draw connections between parts of their proof

state and parts of their proof development. If something looks askew, they need to locate the source

of the issue. The proof assistant could assist the proof writer with drawing these connections, for

example by allowing them to query why their proof state looks a particular way, à la Whyline [26].

More broadly, we believe the proof state should not be viewed as a static projection of information,

but rather as something that the proof writer may want to interactively probe and query.

OBS2: Dealing with the minutiae of mechanization is tedious, but moreover, it diverts the proof writer
from the conceptually interesting facets of their proof.
We saw in §6 that it is not enough for the proof writer to know what, conceptually, the next

step of their proof should be; they must also know how to express this step in the proof assistant’s

language, often via tactics. And it is not enough for them to know what tactic to use, they must also

know how to invoke it with precisely the right arguments. Moreover, if the assistant rejects the proof

attempt, the error message it returns may be yet another cause of difficulty. These complications

demand additional time and effort from the proof writer — even when they understand at a high

level what they need to do next to advance their proof.

Indeed, as we witnessed participants battling with the proof assistant over the details of their

proofs, we were especially struck by comments about how this “overhead” of mechanization

(C3) prevents the proof writer from focusing their attention on the “mathematically meaningful

questions” (L1) surrounding their proof.

REC2: Make the level of detail proof writers have to deal with less overwhelming.
Of course, automation that solves goals outright would be ideal — reducing the level of detail the

proof writer has to deal with to zero — so we should continue to invest in improving push-button

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

QED in Context 1:21

automation. But when fully automating a proof is not feasible, we should also invest in approaches

that take advantage of the considerable knowledge proof writers possess about how to progress

their proofs. For example, if a proof writer knows which tactic they want to use and roughly what

they want to do with the tactic, but not how to instantiate it, the proof assistant could collaboratively

help fill in these details.

We should also support proof writers in deferring uninteresting details while they outline the

mathematical core of their proof. Currently, proof writers can use admit or sorry to skip goals. To

go further, perhaps they could specify entire classes of goals they want to skip — anything about

substitution, for example. Allowing users to construct a barrier between minutiae and core proof

content could further alleviate the friction associated with using proof assistants.

OBS3: Effective proof writing requires effective reuse of prior work.
Proofs build on proofs. As we saw in §7, proof writers take advantage of prior work by themselves

or others, often in the context of searching for applicable lemmas and reusing related proof snippets.

While the participants we observed were generally adept at these tasks, they implicitly relied

on specialized knowledge of the proof developments or libraries they were working with. With

lemma search, for example, participants often relied on their knowledge about fine-grained naming

conventions of the libraries they are using.

REC3: Ensure proof writers are equipped to work within larger proof developments.
Effective search, reuse, and other information seeking within a proof development can be a

significant accelerant to proof writing, but these skills require experience and familiarity. When

addressing barriers to proof assistant competency, we should consider not just “local” proof writing

skills such as tactic usage but also proof engineering [39] skills that grapple with the larger-scale

contexts that proof writing occurs within.

For example, the popular Software Foundations textbook [36] for Coq proceeds fromfirst principles

by re-implementing standard definitions and lemmas, and commands like Search are only briefly

introduced. This pedagogical approach make sense when teaching the basics of formal reasoning,

but to prepare users to enter real-world proof developments, they should additionally be taught

how not to reinvent the wheel but instead find and reuse it.

OBS4: Although their primary product is machine-checked proofs, proof writers still value how their
design choices impact the humans (themselves included!) that interact with their proofs.
Writing natural language proofs is an expressive, often creative endeavor. One might describe

such proofs as clear, convincing, or elegant — or the opposite. What about mechanized proofs?

Mechanization is primarily a communication process that unfolds between the proof writer and

the proof assistant, not between the proof writer and potential readers. We might suppose, then,

that proof writers do not care about such aesthetic or communicative concerns.

But they do care! In more subtle, technical ways, yes, but we saw in §8 that proof writers make

intentional choices that reflect what they value in a proof. They may opt, for example, to write

proofs so that maintainers — often their future selves — can understand and repair failures. And

they may consider what their proof conveys mathematically, at various levels of granularity — from

its high-level organization and lemma structure to low-level decisions about which of several

interchangeable tactics to use.

Moreover, proof writers may care about whether their proofs conform to the conventions

established by a larger proof project. For many Lean users, this project is the mathematical library

mathlib. Participants viewed mathlib both as a source of lemmas and tactics that they could use

within their developments and also as a guide on how they should style their proofs.

REC4: When designing tools, value what proof writers value in their proofs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

There is a recent push towards tools that make humans responsible for less of the mechanization

effort, such as tools for automatic proof generation [1, 16] and repair [20, 40]. When designing and

evaluating such work, we should consider not only whether the produced proofs compile, but also

whether their contents match the user’s preferences. It might matter, for example, what tactics the

proof uses, how concisely it is written, or how well it matches conventions.

REC5: Remember that mechanization is also an expressive endeavor.
Throughout the mechanization process, the proof writer makes decision after decision about

how best to express their proof. While many of these are for the benefit of the proof assistant,

some are for their future selves or others in their community. We advocate that mechanized proofs

be recognized not just as an compilable chunk of code but as what could be the carefully crafted

artifact of a substantial undertaking. To this end, we are excited by projects such as the Archive of

Formal Proofs [15], Alectryon [38], Lean widgets [6], coq-lsp’s Markdown and LaTeX support
5
,

and more.

Suggestions for Further Studies. Our study required participants to be working on an open-ended

project, which enforced a minimum level of experience with proof assistants. A future study could

instead observe novice proof assistant users, e.g., completing homework for a class or following a

tutorial. What barriers do they encounter? Are present pedagogical methods and materials adequate

for addressing those barriers? (We suggested in REC3 that they may not be.) How do the challenges

they face resemble and differ from those encountered by experienced users?

Our study observed participants doing everyday proof work of their choosing, leading to a

wide range of observed tasks that, in turn, allowed us to take a broad view of proof assistant

usage. Future studies could examine specific aspects in further depth. For example, because we

observed individual proof writers within a set block of time, the interpersonal interactions were

asynchronous — reading an old Zulip thread, or making a note that they should ask a colleague later,

for example. What do these interactions look like live? If, say, a proof writer is asking someone to

help debug an issue with their proof, how do they explain the issue, and how does the other person

load the necessary context about a proof they did not write?

More broadly, one might further examine the cultures of proof assistant communities. What

encourages or discourages proof writers to be active members of such communities, and how

does this match up with demographics? When proof assistant communities intersect with existing

proof communities — e.g., among mathematicians who already have norms in place for writing,

disseminating, and evaluating proofs — what collisions and fusions occur?

10 Related Work
Our findings deepen those from prior studies of proof assistant usability.

Some prior studies have observed users on provided tasks. Aitken et al. [2] observed seven users

of HOL [21] proving the same theorem about lists. They found that participants that were more

frequent users of HOL tended to finish the task faster and interact with the proof assistant more.

They noted that there was some, but not much, revision of prior proof steps, which may reflect

the simplicity of the task. Aitken and Melham [3] ran trials with six users of HOL and six users

of Isabelle [35], each on a single task. They cataloged user errors, such as writing invalid syntax,

unintended failures of proof steps, and difficulties recalling correct function and theorem names.

We observe these errors as well in our observations of real work, highlighting how developers use

search functionality and convention to overcome challenges in recalling names, and additional

minutiae of working with the proof assistant like understanding state and error messages.

5
https://github.com/ejgallego/coq-lsp/blob/main/etc/doc/USER_MANUAL.md

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/ejgallego/coq-lsp/blob/main/etc/doc/USER_MANUAL.md


1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

QED in Context 1:23

Other studies have analyzed real-world proof work through log analyses. Ringer et al. [42]

collected a month’s worth of data from eight Coq users. Their findings, like ours, emphasize the

iterative nature of proof development, where the logs showed that users revised specifications after

a failed proof attempt, for example. Our section on Proofs in Motion (§5) describes these patterns of

iteration and revision, detailing the work involved and the aspects of the proof assistant that users

lean on. Staples et al. [46] analyzed project management data from developments related to the

L4.verified development [5] in Isabelle. Their main observation is that proof size is highly-correlated

with “effort” (as reported weekly by managers). Our study offers a deeper look at how proof writers

progress, or fail to, during a particular session of proof work.

Another approach to investigating usability is focus groups. Beckert et al. [8] conducted a focus

group of five Isabelle users. Their participants reported difficulties with figuring out the right

tactic and tactic arguments. They also said that they often wanted to refactor proofs to improve

understandability, though the situations where this occurs were not elaborated on.We offer concrete

examples of issues around precision and communication.

Other prior work has shared its authors’ own experiences working with proof assistants and those

of their team. Andronick et al. [5] and Bourke et al. [10] reflect on the challenges posed by large-

scale proof development. They also point out challenges around local trial and error, debugging

broken proofs, and enforcing conventions, as do we. The projects in these papers (L4.verified and

Verisoft [4]) have several hundred thousands lines of code, which is substantially larger than the

developments our participants typically worked on. As a result, important considerations for them,

such as proof-checking performance and domain specific automation, are not core considerations

of the present paper.

QED at Large [39] surveys work related to proof engineering — the intersection of proof assistants

and software engineering. Several of the processes we mention in this paper are also noted in broad

terms in their survey, such as proof repair and proof reuse.

Lincroft et al. [28] mined data from the implementation repositories and community forums

for Coq, Lean, and Isabelle. Their study focuses on broader contribution patterns (e.g., the lack of

cross-pollination between proof assistants) rather than individual user experiences.

Zooming out from proof assistants, there has been extensive qualitative user research on the

software development process generally — e.g., on refactoring [31], code search [44], and code

generation [7]. There is also a blossoming literature on this kind of work in the area of formal

methods — e.g., on characterizing the experience of working with property-based testing methodol-

ogy [17, 18], on specification languages [22], on correctness-oriented languages like Rust [13, 50],

and on the functional language paradigm upon which they are based [29]. This literature has

identified both obstacles to picking up this tooling and evidence of its successful adoption. Our

intent in the present paper has been to help map out the space of challenges and possibilities for

proof assistants with an analogous study.

11 Conclusion
We conducted an observation study of 30 users of Coq and Lean doing their own proof work, using

the methods of contextual inquiry. Through this study, we developed a nuanced understanding of

what usage of these proof assistants looks like in practice, leading to recommendations that we

hope will help improve the future usability of proof assistants.

Data-Availability Statement
There is no artifact associated with this paper, since the data from our study — e.g., the recordings

and transcripts of study sessions — cannot be made publicly available, per our consent protocols.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

References
[1] Arpan Agrawal, Emily First, Zhanna Kaufman, Tom Reichel, Shizhuo Zhang, Timothy Zhou, Alex Sanchez-Stern,

Talia Ringer, and Yuriy Brun. 2023. Proofster: Automated Formal Verification. In Proceedings of the 45th International
Conference on Software Engineering: Companion Proceedings (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press,

26–30. https://doi.org/10.1109/ICSE-Companion58688.2023.00018

[2] J. Stuart Aitken, Phil Gray, Tom Melham, and Muffy Thomas. 1998. Interactive theorem proving: An empirical study

of user activity. Journal of Symbolic Computation 25, 2 (1998), 263–284.

[3] Stuart Aitken and T Melham. 2000. An analysis of errors in interactive proof attempts. Interacting with computers 12,
6 (2000), 565–586.

[4] Eyad Alkassar, Mark A Hillebrand, Dirk Leinenbach, Norbert W Schirmer, and Artem Starostin. 2008. The Verisoft

approach to systems verification. In Verified Software: Theories, Tools, Experiments: Second International Conference,
VSTTE 2008, Toronto, Canada, October 6-9, 2008. Proceedings 2. Springer, 209–224.

[5] June Andronick, Ross Jeffery, Gerwin Klein, Rafal Kolanski, Mark Staples, He Zhang, and Liming Zhu. 2012. Large-scale

formal verification in practice: A process perspective. In 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 1002–1011.

[6] Edward W. Ayers, Mateja Jamnik, and W. T. Gowers. 2021. A Graphical User Interface Framework for Formal

Verification. In 12th International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 4:1–4:16. https://doi.org/10.4230/LIPIcs.ITP.2021.4

[7] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact

with Code-Generating Models. Proc. ACM Program. Lang. 7, OOPSLA1, Article 78 (apr 2023), 27 pages. https:

//doi.org/10.1145/3586030

[8] Bernhard Beckert, Sarah Grebing, and Florian Böhl. 2015. A Usability Evaluation of Interactive Theorem Provers

Using Focus Groups. In Software Engineering and Formal Methods, Carlos Canal and Akram Idani (Eds.). Springer

International Publishing, Cham, 3–19. https://doi.org/10.1007/978-3-319-15201-1_1

[9] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Analysing Data. Springer International Publishing, Cham,

51–60. https://doi.org/10.1007/978-3-031-02217-3_5

[10] Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski. 2012. Challenges and experiences in managing

large-scale proofs. In Intelligent Computer Mathematics: 11th International Conference, AISC 2012, 19th Symposium,
Calculemus 2012, 5th International Workshop, DML 2012, 11th International Conference, MKM 2012, Systems and Projects,
Held as Part of CICM 2012, Bremen, Germany, July 8-13, 2012. Proceedings 5. Springer, 32–48.

[11] Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. 2021. PL and HCI: better together. Commun. ACM 64, 8

(Aug. 2021), 98–106. https://doi.org/10.1145/3469279

[12] Shardul Chiplunkar and Clément Pit-Claudel. 2023. Diagrammatic notations for interactive theorem proving. In 4th
International Workshop on Human Aspects of Types and Reasoning Assistants. EPFL.

[13] Will Crichton. 2020. The usability of ownership. arXiv preprint arXiv:2011.06171 (2020).
[14] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for dependent type theory. Journal of

automated reasoning 61 (2018), 423–453.

[15] Manuel Eberl, Gerwin Klein, Peter Lammich, Andreas Lochbihler, Tobias Nipkow, Larry Paulson, René Thiemann, and

Dmitriy Traytel (Eds.). 2024. . https://www.isa-afp.org/

[16] Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-proof generation and repair with large

language models. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1229–1241.

[17] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein, Benjamin C. Pierce, and Andrew Head. 2024. Property-

Based Testing in Practice. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
(Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article 187, 13 pages.

https://doi.org/10.1145/3597503.3639581

[18] Harrison Goldstein, Joseph W Cutler, Adam Stein, Benjamin C Pierce, and Andrew Head. 2022. Some Problems with

Properties. In Proc. Workshop on the Human Aspects of Types and Reasoning Assistants (HATRA).
[19] Harrison Goldstein, Jeffrey Tao, Zac Hatfield-Dodds, Benjamin C. Pierce, and Andrew Head. 2024. Tyche: Making

Sense of Property-Based Testing Effectiveness. In The 37th Annual ACM Symposium on User Interface Software and
Technology (UIST ’24). 16. https://doi.org/10.1145/3654777.3676407

[20] Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey. 2023. Mostly Automated Proof Repair for Verified Libraries. Proc.
ACM Program. Lang. 7, PLDI, Article 107 (June 2023), 25 pages. https://doi.org/10.1145/3591221

[21] Michael JC Gordon and Tom F Melham. 1993. Introduction to HOL: A theorem proving environment for higher order
logic. Cambridge University Press.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1109/ICSE-Companion58688.2023.00018
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1007/978-3-031-02217-3_5
https://doi.org/10.1145/3469279
https://www.isa-afp.org/
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3654777.3676407
https://doi.org/10.1145/3591221


1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

QED in Context 1:25

[22] Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishnamurthi. 2022. Little tricky logic: misconceptions in

the understanding of LTL. arXiv preprint arXiv:2211.01677 (2022).

[23] Gudmund Grov, Aleks Kissinger, and Yuhui Lin. 2013. A graphical language for proof strategies. In Logic for Program-
ming, Artificial Intelligence, and Reasoning: 19th International Conference, LPAR-19, Stellenbosch, South Africa, December
14-19, 2013. Proceedings 19. Springer, 324–339.

[24] Karen Holtzblatt and Hugh Beyer. 1997. Contextual design: defining customer-centered systems (1 ed.). Morgan

Kaufmann.

[25] Talia Ringer on Jan 29 and 2020. 2020. Mechanized Proofs for PL: Past, Present, and Future. https://blog.sigplan.org/

2020/01/29/mechanized-proofs-for-pl-past-present-and-future/

[26] Amy J. Ko and Brad A. Myers. 2004. Designing the whyline: a debugging interface for asking questions about program

behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vienna, Austria) (CHI ’04).
Association for Computing Machinery, New York, NY, USA, 151–158. https://doi.org/10.1145/985692.985712

[27] Jannis Limperg and Asta Halkjær From. 2023. Aesop: White-box best-first proof search for Lean. In Proceedings of the
12th ACM SIGPLAN International Conference on Certified Programs and Proofs. 253–266.

[28] Gwenyth Lincroft, Minsung Cho, Katherine Hough, Mahsa Bazzaz, and Jonathan Bell. 2024. Thirty-Three Years of

Mathematicians and Software Engineers: A Case Study of Domain Expertise and Participation in Proof Assistant

Ecosystems. In 2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR). 1–13. https:

//ieeexplore.ieee.org/document/10555745/?arnumber=10555745 ISSN: 2574-3864.

[29] Justin Lubin and Sarah E. Chasins. 2021. How statically-typed functional programmers write code. Proc. ACM Program.
Lang. 5, OOPSLA, Article 155 (oct 2021), 30 pages. https://doi.org/10.1145/3485532

[30] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. InAutomated
Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings.
Springer-Verlag, Berlin, Heidelberg, 625–635. https://doi.org/10.1007/978-3-030-79876-5_37

[31] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2009. How we refactor, and how we know it. In 2009 IEEE
31st International Conference on Software Engineering. 287–297. https://doi.org/10.1109/ICSE.2009.5070529

[32] Wojciech Nawrocki, Edward W Ayers, and Gabriel Ebner. 2023. An extensible user interface for Lean 4. In 14th
International Conference on Interactive Theorem Proving (ITP 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[33] Ernest Ng, Harrison Goldstein, and Benjamin C. Pierce. 2024. Mica: Automated Differential Testing for OCaml Modules.

https://doi.org/10.48550/arXiv.2408.14561 arXiv:2408.14561 [cs].

[34] Lawrence Paulson. 2010. Three Years of Experience with Sledgehammer, a Practical Link between Automatic and

Interactive Theorem Provers. In PAAR-2010: Proceedings of the 2nd Workshop on Practical Aspects of Automated
Reasoning (EPiC Series in Computing, Vol. 9), Renate A. Schmidt, Stephan Schulz, and Boris Konev (Eds.). EasyChair,

Edinburgh, Scotland, 1–10. https://doi.org/10.29007/tnfd

[35] Lawrence C Paulson. 1994. Isabelle: A generic theorem prover. Springer.
[36] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin

Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. 2024. Logical Foundations. Software Foundations, Vol. 1. Electronic textbook.
Version 6.7, http://softwarefoundations.cis.upenn.edu.

[37] Bartosz Piotrowski, Ramon Fernández Mir, and Edward Ayers. 2023. Machine-learned premise selection for Lean. In

International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. Springer, 175–186.
[38] Clément Pit-Claudel. 2020. Untangling mechanized proofs. In Proceedings of the 13th ACM SIGPLAN International

Conference on Software Language Engineering. 155–174.
[39] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019. QED at Large: A Survey of

Engineering of Formally Verified Software. Foundations and Trends® in Programming Languages 5, 2-3 (Sept. 2019),
102–281. https://doi.org/10.1561/2500000045 Publisher: Now Publishers, Inc..

[40] Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman. 2021. Proof repair across type

equivalences. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 112–127.

https://doi.org/10.1145/3453483.3454033

[41] Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL instrumentation for Coq

analysis. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2020).
Association for Computing Machinery, New York, NY, USA, 99–113. https://doi.org/10.1145/3372885.3373823

[42] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2018. Adapting proof automation to adapt proofs. In

Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. 115–129.
[43] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. 2019. Ornaments for proof reuse in Coq. In 10th

International Conference on Interactive Theorem Proving (ITP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[44] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How developers search for code: a case study. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://blog.sigplan.org/2020/01/29/mechanized-proofs-for-pl-past-present-and-future/
https://blog.sigplan.org/2020/01/29/mechanized-proofs-for-pl-past-present-and-future/
https://doi.org/10.1145/985692.985712
https://ieeexplore.ieee.org/document/10555745/?arnumber=10555745
https://ieeexplore.ieee.org/document/10555745/?arnumber=10555745
https://doi.org/10.1145/3485532
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.48550/arXiv.2408.14561
https://doi.org/10.29007/tnfd
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3372885.3373823


1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

Association for Computing Machinery, New York, NY, USA, 191–201. https://doi.org/10.1145/2786805.2786855

[45] Peiyang Song, Kaiyu Yang, and Anima Anandkumar. 2024. Towards large language models as copilots for theorem

proving in lean. arXiv preprint arXiv:2404.12534 (2024).
[46] Mark Staples, Ross Jeffery, June Andronick, Toby Murray, Gerwin Klein, and Rafal Kolanski. 2014. Productivity for

proof engineering. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. 1–4.

[47] Coq Development Team. 1989-2024. The Coq Proof Assistant. http://coq.inria.fr

[48] Matej Urbas and Mateja Jamnik. 2014. A framework for heterogeneous reasoning in formal and informal domains. In

Diagrammatic Representation and Inference: 8th International Conference, Diagrams 2014, Melbourne, VIC, Australia,
July 28–August 1, 2014. Proceedings 8. Springer, 277–292.

[49] Sean Welleck and Rahul Saha. 2023. LLMSTEP: LLM proofstep suggestions in Lean. arXiv preprint arXiv:2310.18457
(2023).

[50] Anna Zeng and Will Crichton. 2019. Identifying barriers to adoption for Rust through online discourse. arXiv preprint
arXiv:1901.01001 (2019).

A Backgrounds of Participants

ID Exp. Occupation

(years)
C1 5 PhD student

C2 2 PhD student

C3 5 PhD student

C4 2 postdoc

C5 8 postdoc

C6 4 postdoc

C7 1 PhD student

C8 3 PhD student

C9 5 PhD student

C10 4 PhD student

C11 5 PhD student

C12 4 PhD student

C13 3 undergraduate student

C14 2 (no response)
C15 10+ professor

(a) Coq Participant Backgrounds

ID Exp. Occupation

(years)
L1 1 PhD student

L2 2 PhD student

L3 3 PhD student

L4 4 software engineer

L5 2 professor

L6 3 PhD student

L7 7 PhD student

L8 1 software engineer

L9 2 PhD student

L10 3 PhD student

L11 <1 PhD student

L12 <1 professor

L13 <1 PhD student

L14 4 research software engineer

L15 <1 graduate student

(b) Lean Participant Backgrounds

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/2786805.2786855
http://coq.inria.fr

	Abstract
	1 Introduction
	2 Terminology
	3 Methodology
	3.1 Setting
	3.2 Protocol
	3.3 Qualitative Analysis

	4 Overview of Findings
	5 Proofs in Motion
	5.1 Iteration
	5.2 Context Switching
	5.3 Small-Stakes Trials
	5.4 Sandboxing

	6 Conversing with the Prover
	6.1 Speaking to the Prover
	6.2 Listening to the Prover

	7 Proof Sources and Resources
	7.1 Translating Paper Proofs
	7.2 Doing Scratch Work
	7.3 Reusing Proofs
	7.4 Searching for Lemmas
	7.5 Seeking Other Information

	8 Beyond QED
	8.1 Maintainability
	8.2 Communication
	8.3 Conventions
	8.4 Other Considerations

	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Backgrounds of Participants

